BioMedInformatics, Vol. 2, Pages 18-42: Medical Decision Making for Cardiac MRI with CFD “Detection of Severe Stenosis Using a 5D Model of the Descending Aorta”

BioMedInformatics doi: 10.3390/biomedinformatics2010002

Houneida Sakly
Mourad Said
Moncef Tagina

The aim of this study is to develop a reliable 5D (x, y, z, time, flow dimension) model for medical decision making. Sophisticated techniques for the assessment of serious stenosis were developed using time-dependent instantaneous pressure gradients through the aorta (flow rate, Reynolds number, velocity, etc.). A 74 cardiac MRI scan and 3057 scans were performed on a 10-year-old patient with congenital valve and valvular aortic stenosis on sensitive MRI and coarctation (operated and then dilated) in the sense of shone syndrome. The occlusion rate was estimated to be 80.5%. The stenosis area was approximately 15 mm long and 10 mm high. The fluid solver (NS) exhibited a significant shear stress of −3.735 × 10−5 Pa within the first 10 iterations. There was a significant drop in the flux mass of −0.0050 (kg/s), as well as high blood turbulence in vortex field lines and low geometry Reynolds cells. The fifth dimension was used for negative velocity prediction (−81.4 cm/s). The discoveries of the 5D aortic simulation are convincing based on the evaluation of its physical and biomedical features.

Free full text: Read More

MDPI Publishing