Healthcare, Vol. 10, Pages 27: Factors Affecting the Severity of Placental Abruption in Pregnant Vehicle Drivers: Analysis with a Novel Finite Element Model

Healthcare doi: 10.3390/healthcare10010027

Katsunori Tanaka
Yasuki Motozawa
Kentaro Takahashi
Tetsuo Maki
Masahito Hitosugi

We clarified factors affecting the severity of placental abruption in motor vehicle collisions by quantitively analyzing the area of placental abruption in a numerical simulation of an unrestrained pregnant vehicle driver at collision velocities of 3 and 6 m/s. For the simulation, we constructed a novel finite element model of a small 30-week pregnant woman, which was validated anthropometrically using computed tomography data and biomechanically using previous examinations of post-mortem human subjects. In the simulation, stress in the elements of the utero–placental interface was computed, and those elements exceeding a failure criterion were considered to be abrupted. It was found that a doubling of the collision velocity increased the area of placental abruption 10-fold, and the abruption area was approximately 20% for a collision velocity of 6 m/s, which is lower than the speed limit for general roads. This result implies that even low-speed vehicle collisions have negative maternal and fetal outcomes owing to placental abruption without a seatbelt restraint. Additionally, contact to the abdomen, 30 mm below the umbilicus, led to a larger placental abruption area than contact at the umbilicus level when the placenta was located at the uterus fundus. The results support that a reduction in the collision speed and seatbelt restraint at a suitable position are important to decrease the placental abruption area and therefore protect a pregnant woman and her fetus in a motor vehicle collision.

Free full text: Read More

MDPI Publishing