Oajour

Biology, Vol. 11, Pages 33: CGENet: A Deep Graph Model for COVID-19 Detection Based on Chest CT

Biology doi: 10.3390/biology11010033

Authors:
Si-Yuan Lu
Zheng Zhang
Yu-Dong Zhang
Shui-Hua Wang

Accurate and timely diagnosis of COVID-19 is indispensable to control its spread. This study proposes a novel explainable COVID-19 diagnosis system called CGENet based on graph embedding and an extreme learning machine for chest CT images. We put forward an optimal backbone selection algorithm to select the best backbone for the CGENet based on transfer learning. Then, we introduced graph theory into the ResNet-18 based on the k-nearest neighbors. Finally, an extreme learning machine was trained as the classifier of the CGENet. The proposed CGENet was evaluated on a large publicly-available COVID-19 dataset and produced an average accuracy of 97.78% based on 5-fold cross-validation. In addition, we utilized the Grad-CAM maps to present a visual explanation of the CGENet based on COVID-19 samples. In all, the proposed CGENet can be an effective and efficient tool to assist COVID-19 diagnosis.

Free full text: Read More

MDPI Publishing