Molecules, Vol. 27, Pages 147: Synthesis, Crystal Structures, and Spectroscopic Properties of Novel Gadolinium and Erbium Triphenylsiloxide Coordination Entities

Molecules doi: 10.3390/molecules27010147

Patrycja Wytrych
Józef Utko
Julia Kłak
Maciej Ptak
Mariusz Stefanski
Tadeusz Lis
Jolanta Ejfler
Łukasz John

In alkali metal and lanthanide coordination chemistry, triphenylsiloxides seem to be unduly underappreciated ligands. This is as surprising as that such substituents play a crucial role, among others, in stabilizing rare oxidation states of lanthanide ions, taking a part of intramolecular and molecular interactions stabilizing metal-oxygen cores and many others. This paper reports the synthesis and characterization of new lithium [Li4(OSiPh3)4(THF)2] (1), and sodium [Na4(OSiPh3)4] (2) species, which were later used in obtaining novel gadolinium [Gd(OSiPh3)3(THF)3]·THF (3), and erbium [Er(OSiPh3)3(THF)3]·THF (4) triphenylsiloxides. Crystal structures were determined for all 1–4 compounds, and in addition, IR, Raman, absorption spectroscopy studies were conducted for 3 and 4 lanthanide compounds. Furthermore, direct current (dc) variable-temperature magnetic susceptibility measurements on polycrystalline samples of 3 and 4 were carried out in the temperature range 1.8–300 K. The 3 shows behavior characteristics for the paramagnetism of the Gd3+ ion. In contrast, the magnetic properties of 4 are dominated by the crystal field effect on the Er3+ ion, masking the magnetic interaction between magnetic centers of neighboring molecules.

Free full text: Read More

MDPI Publishing