• Bhandari V, Houry WA (2015) Substrate interaction networks of the Escherichia coli chaperones: trigger factor, DnaK and GroEL. Adv Exp Med Biol 883:271–294. https://doi.org/10.1007/978-3-319-23603-2_15

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Collins-Racie LA, McColgan JM, Grant KL, DiBlasio-Smith EA, McCoy JM, LaVallie ER (1995) Production of recombinant bovine enterokinase catalytic subunit in Escherichia coli using the novel secretory fusion partner DsbA. Biotechnology (NY) 13:982–987. https://doi.org/10.1038/nbt0995-982

    CAS 
    Article 

    Google Scholar
     

  • Davis GD, Elisee C, Newham DM, Harrison RG (1999) New fusion protein systems designed to give soluble expression in Escherichia coli. Biotechnol Bioeng 65:382–388. https://doi.org/10.1002/(SICI)1097-0290(19991120)65:4<382::AID-BIT2>3.0.CO;2-I

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Fischer G, Schmid FX (1999) Peptidyl-prolyl cis/trans isomerases in molecular chaperones and folding catalysts. Harwood Academic, Amsterdam, pp 461–489


    Google Scholar
     

  • Furutani M, Ideno A, Iida T, Maruyama T (2000) FK506 binding protein from a thermophilic archaeon, Methanococcus thermolithotrophicus, has chaperone-like activity in vitro. Biochemistry 39:453–462. https://doi.org/10.1021/bi9911076

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Galat A (2003) Peptidylprolyl cis/trans isomerases (immunophilins): biological diversity-targets-functions. Curr Top Med Chem 3:1315–1347. https://doi.org/10.2174/1568026033451862

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Göthel SF, Marahiel MA (1999) Peptidyl-prolyl cis-trans isomerases, a superfamily of ubiquitous folding catalysts. Cell Mol Life Sci 55:423–436. https://doi.org/10.1007/s000180050299

    Article 
    PubMed 

    Google Scholar
     

  • Geitner AJ, Varga E, Wehmer M, Schmid FX (2013) Generation of a highly active folding enzyme by combining a parvulin-type prolyl isomerase from SurA with an unrelated chaperone domain. J Mol Biol 425:4089–4098. https://doi.org/10.1016/j.jmb.2013.06.038

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Han KY, Song JA, Ahn KY, Park JS, Seo HS, Lee J (2007) Solubilization of aggregation-prone heterologous proteins by covalent fusion of stress-responsive Escherichia coli protein, SlyD. Protein Eng Des Sel 20:543–549. https://doi.org/10.1093/protein/gzm055

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Ideno A, Furutani M, Iba Y, Kurosawa Y, Maruyama T (2002) FK506 binding protein from the hyperthermophilic archaeon Pyrococcus horikoshii suppresses the aggregation of proteins in Escherichia coli. Appl Environ Microbiol 68:464–469. https://doi.org/10.1128/AEM.68.2.464-469.2002

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ideno A, Furutani M, Iwabuchi T, Iida T, Iba Y, Kurosawa Y, Sakuraba H, Ohshima T, Kawarabayashi Y, Maruyama T (2004) Expression of foreign proteins in Escherichia coli by fusing with an archaeal FK506 binding protein. Appl Microbiol Biotechnol 64:99–105. https://doi.org/10.1007/s00253-003-1459-4

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Ideno A, Yoshida T, Iida T, Furutani M, Maruyama T (2001) FK506-binding protein of the hyperthermophilic archaeum, Thermococcus sp. KS-1, a cold-shock-inducible peptidyl-prolyl cis-trans isomerase with activities to trap and refold denatured proteins. Biochem J 357:465–471. https://doi.org/10.1042/0264-6021:3570465

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iida T, Furutani M, Nishida F, Maruyama T (1998) FKBP-type peptidyl-prolyl cis–trans isomerase from a sulfur-dependent hyperthermophilic archaeon, Thermococcus sp. KS-1. Gene 222:249–255. https://doi.org/10.1016/S0378-1119(98)00484-3

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Koyanagi T, Nakagawa A, Sakurama H, Yamamoto K, Sakurai N, Takagi Y, Minami H, Katayama T, Kumagai H (2012) Eukaryotic-type aromatic amino acid decarboxylase from the root colonizer Pseudomonas putida is highly specific for 3,4-dihydroxyphenyl-L-alanine, an allelochemical in the rhizosphere. Microbiology 158:2965–2974. https://doi.org/10.1099/mic.0.062463-0

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Kim JS, Nakagawa A, Yamazaki Y, Matsumura E, Koyanagi T, Minami H, Katayama T, Sato F, Kumagai H (2013) Improvement of reticuline productivity from dopamine by using engineered Escherichia coli. Biosci Biotechnol Biochem 77:2166–2168. https://doi.org/10.1271/bbb.130552

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Kyratsous CA, Silverstein SJ, DeLong CR, Panagiotidis CA (2009) Chaperone-fusion expression plasmid vectors for improved solubility of recombinant proteins in Escherichia coli. Gene 440:9–15. https://doi.org/10.1016/j.gene.2009.03.011

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu KP, Finn G, Lee TH, Nicholson LK (2007) Prolyl cis-trans isomerization as a molecular timer. Nat Chem Biol 3:619–629. https://doi.org/10.1038/nchembio.2007.35

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Maruyama T, Furutani M (2000) Archaeal peptidyl prolyl cis-trans isomerases (PPIases). Front Biosci 5:D821-836. https://doi.org/10.2741/maruyama

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Maruyama T, Suzuki R, Furutani M (2004) Archaeal peptidyl prolyl cis-trans isomerases (PPIases) update 2004. Front Biosci 9:1680–1720. https://doi.org/10.2741/1361

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Matsumura E, Nakagawa A, Tomabechi Y, Koyanagi T, Kumagai H, Yamamoto K, Katayama T, Sato F, Minami H (2017) Laboratory-scale production of (S)-reticuline, an important intermediate of benzylisoquinoline alkaloids, using a bacterial-based method. Biosci Biotechnol Biochem 81:396–402. https://doi.org/10.1080/09168451.2016.1243985

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Minami H, Kim JS, Ikezawa N, Takemura T, Katayama T, Kumagai H, Sato F (2008) Microbial production of plant benzylisoquinoline alkaloids. Proc Natl Acad Sci USA 105:7393–7398. https://doi.org/10.1073/pnas.0802981105

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Misawa N, Nodate M, Otomatsu T, Shimizu K, Kaido C, Kikuta M, Ideno A, Ikenaga H, Ogawa J, Shimizu S, Shindo K (2011) Bioconversion of substituted naphthalenes and β-eudesmol with the cytochrome P450 BM3 variant F87V. Appl Microbiol Biotechnol 90:147–157. https://doi.org/10.1007/s00253-010-3064-7

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Nakagawa A, Matsumura E, Koyanagi T, Katayama T, Kawano N, Yoshimatsu K, Yamamoto K, Kumagai H, Sato F, Minami H (2016) Total biosynthesis of opiates by stepwise fermentation using engineered Escherichia coli. Nat Commun 7:10390. https://doi.org/10.1038/ncomms10390

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nakagawa A, Matsuzaki C, Matsumura E, Koyanagi T, Katayama T, Yamamoto K, Sato F, Kumagai H, Minami H (2014) (R,S)-tetrahydropapaveroline production by stepwise fermentation using engineered Escherichia coli. Sci Rep 4:6695. https://doi.org/10.1038/srep06695

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nakagawa A, Minami H, Kim JS, Koyanagi T, Katayama T, Sato F, Kumagai H (2011) A bacterial platform for fermentative production of plant alkaloids. Nat Commun 2:326. https://doi.org/10.1038/ncomms1327

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Nakagawa A, Minami H, Kim JS, Koyanagi T, Katayama T, Sato F, Kumagai H (2012) Bench-top fermentative production of plant benzylisoquinoline alkaloids using a bacterial platform. Bioeng Bugs 3:49–53. https://doi.org/10.4161/bbug.3.1.18446

    Article 
    PubMed 

    Google Scholar
     

  • Nozach H, Fruchart-Gaillard C, Fenaille F, Beau F, Ramos OH, Douzi B, Saez NJ, Moutiez M, Servent D, Gondry M, Thaï R, Cuniasse P, Vincentelli R, Dive V (2013) High throughput screening identifies disulfide isomerase DsbC as a very efficient partner for recombinant expression of small disulfide-rich proteins in E. coli. Microb Cell Fact 12:2–16. https://doi.org/10.1186/1475-2859-12-37

    CAS 
    Article 

    Google Scholar
     

  • Seo HS, Kim SE, Han KY, Park JS, Kim YH, Sim SJ, Lee J (2009) Functional fusion mutant of Candida antarctica lipase B (CalB) expressed in Escherichia coli. Biochim Biophys Acta 1794:519–525. https://doi.org/10.1016/j.bbapap.2008.12.007

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Shaw PE (2002) Peptidyl-prolyl isomerases: a new twist to transcription. EMBO Rep 3:521–526. https://doi.org/10.1093/embo-reports/kvf118

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tong M, Jiang Y (2015) FK506-binding proteins and their diverse functions. Curr Mol Pharmacol 9:48–65. https://doi.org/10.2174/1874467208666150519113541

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.springeropen.com/)