• 1.

    Shankar GM, Li S, Mehta TH, Garcia-Munoz A, Shepardson NE, Smith I, Brett FM, Farrell MA, Rowan MJ, Lemere CA, et al. Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat Med. 2008;14(8):837–42.

    Article 

    Google Scholar
     

  • 2.

    Smith C, Anderton BH. Dorothy-Russell-memorial-lecture—the molecular pathology of Alzheimers-disease—are we any closer to understanding the neurodegenerative process. Neuropathol Appl Neurobiol. 1994;20(4):322–38.

    Article 

    Google Scholar
     

  • 3.

    Tahirbegi IB, Pardo WA, Alvira M, Mir M, Samitier J. Amyloid A beta(42), a promoter of magnetite nanoparticle formation in Alzheimer’s disease. Nanotechnology. 2016;27(46):465102.

    Article 

    Google Scholar
     

  • 4.

    Karran E, Mercken M, De Strooper B. The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics. Nat Rev Drug Discovery. 2011;10(9):698-U1600.

    Article 

    Google Scholar
     

  • 5.

    Pauwels K, Williams TL, Morris KL, Jonckheere W, Vandersteen A, Kelly G, Schymkowitz J, Rousseau F, Pastore A, Serpell LC, Broersen K. Structural basis for increased toxicity of pathological A beta(42): A beta(40) ratios in Alzheimer disease. J Biol Chem. 2012;287(8):5650–60.

    Article 

    Google Scholar
     

  • 6.

    Williams TL, Johnson BRG, Urbanc B, Jenkins ATA, Connell SDA, Serpell LC. A beta 42 oligomers, but not fibrils, simultaneously bind to and cause damage to ganglioside-containing lipid membranes. Biochem J. 2011;439:67–77.

    Article 

    Google Scholar
     

  • 7.

    Smith DP, Smith DG, Curtain CC, Boas JF, Pilbrow JR, Ciccotosto GD, Lau T-L, Tew DJ, Perez K, Wade JD, et al. Copper-mediated amyloid-beta toxicity is associated with an intermolecular histidine bridge. J Biol Chem. 2006;281(22):15145–54.

    Article 

    Google Scholar
     

  • 8.

    Green KN, LaFerla FM. Linking calcium to A beta and Alzheimer’s disease. Neuron. 2008;59(2):190–4.

    Article 

    Google Scholar
     

  • 9.

    Frederickson CJ, Koh JY, Bush AI. The neurobiology of zinc in health and disease. Nat Rev Neurosci. 2005;6(6):449–62.

    Article 

    Google Scholar
     

  • 10.

    Yumoto S, Kakimi S, Ohsaki A, Ishikawa A. Demonstration of aluminum in amyloid fibers in the cores of senile plaques in the brains of patients with Alzheimer’s disease. J Inorg Biochem. 2009;103(11):1579–84.

    Article 

    Google Scholar
     

  • 11.

    Wang Y, Wang J, Huang S, Liu C, Fu Y. Evaluating the effect of aminoglycosides on the interaction between bovine serum albumins by atomic force microscopy. Int J Biol Macromol. 2019;134:28–35.

    Article 

    Google Scholar
     

  • 12.

    Wang C, Stanciu CE, Ehrhardt CJ, Yadavalli VK. Nanoscale characterization of forensically relevant epithelial cells and surface associated extracellular DNA. Forensic Sci Int. 2017;277:252–8.

    Article 

    Google Scholar
     

  • 13.

    Sapra KT, Besir S, Oesterhelt D, Muller DJ. Characterizing molecular interactions in different bacteriorhodopsin assemblies by single-molecule force spectroscopy. J Mol Biol. 2006;355(4):640–50.

    Article 

    Google Scholar
     

  • 14.

    Mullett WM, Lai EPC, Yeung JM. Surface plasmon resonance-based immunoassays. Methods. 2000;22(1):77–91.

    Article 

    Google Scholar
     

  • 15.

    Roda A, Pasini P, Mirasoli M, Michelini E, Guardigli M. Biotechnological applications of bioluminescence and chemiluminescence. Trends Biotechnol. 2004;22(6):295–303.

    Article 

    Google Scholar
     

  • 16.

    Lee DW. Revisiting the interaction force measurement between lipid bilayers using a surface forces apparatus (SFA). J Oleo Sci. 2018;67(11):1361–72.

    Article 

    Google Scholar
     

  • 17

    Wang C, Hu R, Morrissey JJ, Kharasch ED, Singamaneni S. Single molecule force spectroscopy to compare natural versus artificial antibody-antigen interaction. Small. 2017;13(19):1604255.

    Article 

    Google Scholar
     

  • 18.

    Wang C, Ehrhardt CJ, Yadavalli VK. Nanoscale imaging and hydrophobicity mapping of the antimicrobial effect of copper on bacterial surfaces. Micron. 2016;88:16–23.

    Article 

    Google Scholar
     

  • 19.

    Kang L, Smith S, Wang C. Metal-organic framework preserves the biorecognition of antibodies on nanoscale surfaces validated by single-molecule force spectroscopy. ACS Appl Mater Interfaces. 2020;12(2):3011–20.

    Article 

    Google Scholar
     

  • 20.

    Han X, Sun S, He T. Preparation and photolithography of self-assembled monolayers of 10-mercaptodecanylphosphonic acid on glass mediated by zirconium for protein patterning. Colloids Surfaces B-Biointerfaces. 2013;108:66–71.

    Article 

    Google Scholar
     

  • 21.

    Huang P, Song E, Sun Y, Li T, Wei D, Liu M, Wu Y. Schiff-based Pd(II)/Fe(III) bimetallic self-assembly monolayer-preparation, structure, catalytic dynamic and synergistic. Mol Catal. 2019;469:75–86.

    Article 

    Google Scholar
     

  • 22.

    Wang C, Yadavalli VK. Investigating biomolecular recognition at the cell surface using atomic force microscopy. Micron. 2014;60:5–17.

    Article 

    Google Scholar
     

  • 23.

    Quagliano LG. Observation of molecules adsorbed on III-V semiconductor quantum dots by surface-enhanced Raman scattering. J Am Chem Soc. 2004;126(23):7393–8.

    Article 

    Google Scholar
     

  • 24.

    Wang P, Liu Z. Darling-Dennison resonance of thiourea adsorbed on the silver electrode revealed by surface enhanced Raman spectroscopy. J Raman Spectrosc. 2013;44(9):1273–6.

    Article 

    Google Scholar
     

  • 25.

    Yin HJ, Chen ZY, Zhao YM, Lv MY, Shi CA, Wu ZL, Zhang X, Liu L, Wang ML, Xu HJ. Ag@Au core-shell dendrites: a stable, reusable and sensitive surface enhanced Raman scattering substrate. Sci Rep. 2015. https://doi.org/10.1038/srep14502.

    Article 

    Google Scholar
     

  • 26

    Lekka M, Kulik AJ, Jeney S, Raczkowska J, Lekki J, Budkowski A, Forro L. Friction force microscopy as an alternative method to probe molecular interactions. J Chem Phys. 2005;123(1):014702.

    Article 

    Google Scholar
     

  • 27.

    Ferretti S, Paynter S, Russell DA, Sapsford KE, Richardson DJ. Self-assembled monolayers: a versatile tool for the formulation of bio-surfaces. Trac-Trends Anal Chem. 2000;19(9):530–40.

    Article 

    Google Scholar
     

  • 28.

    Schwartz DK. Mechanisms and kinetics of self-assembled monolayer formation. Annu Rev Phys Chem. 2001;52:107–37.

    Article 

    Google Scholar
     

  • 29.

    Castner DG, Hinds K, Grainger DW. X-ray photoelectron spectroscopy sulfur 2p study of organic thiol and disulfide binding interactions with gold surfaces. Langmuir. 1996;12(21):5083–6.

    Article 

    Google Scholar
     

  • 30.

    Martins MCL, Ratner BD, Barbosa MA. Protein adsorption on mixtures of hydroxyl- and methylterminated alkanethiols self-assembled monolavers. J Biomed Mater Res, Part A. 2003;67A(1):158–71.

    Article 

    Google Scholar
     

  • 31.

    Ishida T, Choi N, Mizutani W, Tokumoto H, Kojima I, Azehara H, Hokari H, Akiba U, Fujihira M. High-resolution X-ray photoelectron spectra of organosulfur monolayers on Au(111): S(2p) spectral dependence on molecular species. Langmuir. 1999;15(20):6799–806.

    Article 

    Google Scholar
     

  • 32.

    Ivanov YD, Frantsuzov PA, Bykov VA, Besedin SP, Hoa GHB, Archakov AI. Comparative investigation of PdR by usual and ultrafine atomic force microscopy. Anal Methods. 2010;2(6):688–93.

    Article 

    Google Scholar
     

  • 33.

    Brinet D, Gaie-Levrel F, Delatour V, Kaffy J, Ongeri S, Taverna M. In vitro monitoring of amyloid beta-peptide oligomerization by Electrospray differential mobility analysis: an alternative tool to evaluate Alzheimer’s disease drug candidates. Talanta. 2017;165:84–91.

    Article 

    Google Scholar
     

  • 34.

    Alies B, Hureau C, Faller P. The role of metal ions in amyloid formation: general principles from model peptides. Metallomics. 2013;5(3):183–92.

    Article 

    Google Scholar
     

  • 35.

    Banks WA, Niehoff ML, Drago D, Zatta P. Aluminum complexing enhances amyloid beta protein penetration of blood-brain barrier. Brain Res. 2006;1116:215–21.

    Article 

    Google Scholar
     

  • 36.

    Hoare DG, Koshland DE. A method for quantitative modification and estimation of carboxylic acid groups in proteins. J Biol Chem. 1967;242(10):2447–3000.

    Article 

    Google Scholar
     

  • 37.

    Wang C, Wang J, Deng L. Evaluating interaction forces between BSA and rabbit anti-BSA in sulphathiazole sodium, tylosin and levofloxacin solution by AFM. Nanoscale Res Lett. 2011;6:1–9.


    Google Scholar
     

  • 38.

    Wakayama J, Sekiguchi H, Akanuma S, Ohtani T, Sugiyama S. Methods for reducing nonspecific interaction in antibody-antigen assay via atomic force microscopy. Anal Biochem. 2008;380(1):51–8.

    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)