• 1.

    Hippius H, Neundörfer G. The discovery of Alzheimer’s disease. Dialogues Clin Neurosci. 2003;5(1):101–8.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 2.

    Perl DP. Neuropathology of Alzheimer’s disease. Mt Sinai J Med. 2010;77(1):32–42.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 3.

    Spillantini MG, Goedert M. Tau pathology and neurodegeneration. Lancet Neurol. 2013;12(6):609–22.

    CAS 
    PubMed 

    Google Scholar
     

  • 4.

    Parbo P, Ismail R, Sommerauer M, Stokholm MG, Hansen AK, Hansen KV, et al. Does inflammation precede tau aggregation in early Alzheimer’s disease? A PET study. Neurobiol Dis. 2018;117:211–6.

    CAS 
    PubMed 

    Google Scholar
     

  • 5.

    Wyss-Coray T. Inflammation in Alzheimer disease: driving force, bystander or beneficial response? Nat Med. 2006;12(9):1005–15.

    CAS 
    PubMed 

    Google Scholar
     

  • 6.

    Tarkowski E, Andreasen N, Tarkowski A, Blennow K. Intrathecal inflammation precedes development of Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 2003;74(9):1200–5.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 7.

    Zelova H, Hosek J. TNF-alpha signalling and inflammation: interactions between old acquaintances. Inflamm Res. 2013;62(7):641–51.

    CAS 
    PubMed 

    Google Scholar
     

  • 8.

    Alvarez A, Cacabelos R, Sanpedro C, Garcia-Fantini M, Aleixandre M. Serum TNF-alpha levels are increased and correlate negatively with free IGF-I in Alzheimer disease. Neurobiol Aging. 2007;28(4):533–6.

    CAS 
    PubMed 

    Google Scholar
     

  • 9.

    Paganelli R, Di Iorio A, Patricelli L, Ripani F, Sparvieri E, Faricelli R, et al. Proinflammatory cytokines in sera of elderly patients with dementia: levels in vascular injury are higher than those of mild-moderate Alzheimer’s disease patients. Exp Gerontol. 2002;37(2–3):257–63.

    CAS 
    PubMed 

    Google Scholar
     

  • 10.

    Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, et al. Inflammation and Alzheimer’s disease. Neurobiol Aging. 2000;21(3):383–421.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 11.

    Patel NS, Paris D, Mathura V, Quadros AN, Crawford FC, Mullan MJ. Inflammatory cytokine levels correlate with amyloid load in transgenic mouse models of Alzheimer’s disease. J Neuroinflammation. 2005;2(1):9.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 12.

    He P, Zhong Z, Lindholm K, Berning L, Lee W, Lemere C, et al. Deletion of tumor necrosis factor death receptor inhibits amyloid beta generation and prevents learning and memory deficits in Alzheimer’s mice. J Cell Biol. 2007;178(5):829–41.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 13.

    Yamamoto M, Kiyota T, Horiba M, Buescher JL, Walsh SM, Gendelman HE, et al. Interferon-gamma and tumor necrosis factor-alpha regulate amyloid-beta plaque deposition and beta-secretase expression in Swedish mutant APP transgenic mice. Am J Pathol. 2007;170(2):680–92.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 14.

    Liao YF, Wang BJ, Cheng HT, Kuo LH, Wolfe MS. Tumor necrosis factor-alpha, interleukin-1beta, and interferon-gamma stimulate gamma-secretase-mediated cleavage of amyloid precursor protein through a JNK-dependent MAPK pathway. J Biol Chem. 2004;279(47):49523–32.

    CAS 
    PubMed 

    Google Scholar
     

  • 15.

    Janelsins MC, Mastrangelo MA, Park KM, Sudol KL, Narrow WC, Oddo S, et al. Chronic neuron-specific tumor necrosis factor-alpha expression enhances the local inflammatory environment ultimately leading to neuronal death in 3xTg-AD mice. Am J Pathol. 2008;173(6):1768–82.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Ralay Ranaivo H, Craft JM, Hu W, Guo L, Wing LK, Van Eldik LJ, et al. Glia as a therapeutic target: selective suppression of human amyloid-beta-induced upregulation of brain proinflammatory cytokine production attenuates neurodegeneration. J Neurosci. 2006;26(2):662–70.

    PubMed 

    Google Scholar
     

  • 17.

    Rosenberg PB. Clinical aspects of inflammation in Alzheimer’s disease. Int Rev Psychiatry. 2005;17(6):503–14.

    PubMed 

    Google Scholar
     

  • 18.

    McGeer EG, McGeer PL. Inflammatory processes in Alzheimer’s disease. Prog Neuropsychopharmacol Biol Psychiatry. 2003;27(5):741–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 19.

    Paouri E, Tzara O, Kartalou GI, Zenelak S, Georgopoulos S. Peripheral tumor necrosis factor-alpha (TNF-α) modulates amyloid pathology by regulating blood-derived immune cells and glial response in the brain of AD/TNF transgenic mice. J Neurosci. 2017;37(20):5155–71.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Kalovyrna N, Apokotou O, Boulekou S, Paouri E, Boutou A, Georgopoulos S. A 3’UTR modification of the TNF-α mouse gene increases peripheral TNF-α and modulates the Alzheimer-like phenotype in 5XFAD mice. Sci Rep. 2020;10(1):8670.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 21.

    Collins JS, Perry RT, Watson B Jr, Harrell LE, Acton RT, Blacker D, et al. Association of a haplotype for tumor necrosis factor in siblings with late-onset Alzheimer disease: the NIMH Alzheimer disease genetics initiative. Am J Med Genet. 2000;96(6):823–30.

    CAS 
    PubMed 

    Google Scholar
     

  • 22.

    Shi JQ, Shen W, Chen J, Wang BR, Zhong LL, Zhu YW, et al. Anti-TNF-α reduces amyloid plaques and tau phosphorylation and induces CD11c-positive dendritic-like cell in the APP/PS1 transgenic mouse brains. Brain Res. 2011;1368:239–47.

    CAS 

    Google Scholar
     

  • 23.

    Shi JQ, Wang BR, Jiang WW, Chen J, Zhu YW, Zhong LL, et al. Cognitive improvement with intrathecal administration of infliximab in a woman with Alzheimer’s disease. J Am Geriatr Soc. 2011;59(6):1142–4.

    PubMed 

    Google Scholar
     

  • 24.

    Kim DH, Choi SM, Jho J, Park MS, Kang J, Park SJ, et al. Infliximab ameliorates AD-associated object recognition memory impairment. Behav Brain Res. 2016;311:384–91.

    CAS 
    PubMed 

    Google Scholar
     

  • 25.

    Tobinick E, Gross H, Weinberger A, Cohen H. TNF-alpha modulation for treatment of Alzheimer’s disease: a 6-month pilot study. MedGenMed. 2006;8(2):25.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 26.

    McAlpine FE, Lee JK, Harms AS, Ruhn KA, Blurton-Jones M, Hong J, et al. Inhibition of soluble TNF signaling in a mouse model of Alzheimer’s disease prevents pre-plaque amyloid-associated neuropathology. Neurobiol Dis. 2009;34(1):163–77.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 27.

    Steeland S, Gorlé N, Vandendriessche C, Balusu S, Brkic M, Van Cauwenberghe C, et al. Counteracting the effects of TNF receptor-1 has therapeutic potential in Alzheimer’s disease. EMBO Mol Med. 2018;10(4).

  • 28.

    Boado RJ, Hui EK, Lu JZ, Zhou QH, Pardridge WM. Selective targeting of a TNFR decoy receptor pharmaceutical to the primate brain as a receptor-specific IgG fusion protein. J Biotechnol. 2010;146(1–2):84–91.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 29.

    Wang Y, Mandelkow E. Tau in physiology and pathology. Nat Rev Neurosci. 2016;17(1):5–21.

    PubMed 

    Google Scholar
     

  • 30.

    Laurent C, Buée L, Blum D. Tau and neuroinflammation: what impact for Alzheimer’s disease and tauopathies? Biomed J. 2018;41(1):21–33.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 31.

    Yoshiyama Y, Higuchi M, Zhang B, Huang SM, Iwata N, Saido TC, et al. Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron. 2007;53(3):337–51.

    CAS 
    PubMed 

    Google Scholar
     

  • 32.

    Maphis N, Xu G, Kokiko-Cochran ON, Jiang S, Cardona A, Ransohoff RM, et al. Reactive microglia drive tau pathology and contribute to the spreading of pathological tau in the brain. Brain. 2015;138(Pt 6):1738–55.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Garwood CJ, Cooper JD, Hanger DP, Noble W. Anti-inflammatory impact of minocycline in a mouse model of tauopathy. Front Psychiatry. 2010;1:136.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 34.

    Yoshiyama Y, Kojima A, Ishikawa C, Arai K. Anti-inflammatory action of donepezil ameliorates tau pathology, synaptic loss, and neurodegeneration in a tauopathy mouse model. J Alzheimers Dis. 2010;22(1):295–306.

    CAS 
    PubMed 

    Google Scholar
     

  • 35.

    Sumbria RK, Zhou QH, Hui EK, Lu JZ, Boado RJ, Pardridge WM. Pharmacokinetics and brain uptake of an IgG-TNF decoy receptor fusion protein following intravenous, intraperitoneal, and subcutaneous administration in mice. Mol Pharm. 2013;10(4):1425–31.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 36.

    Zhou QH, Boado RJ, Hui EK, Lu JZ, Pardridge WM. Brain-penetrating tumor necrosis factor decoy receptor in the mouse. Drug Metab Dispos. 2011;39(1):71–6.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 37.

    Chang R, Knox J, Chang J, Derbedrossian A, Vasilevko V, Cribbs D, et al. Blood–brain barrier penetrating biologic TNF-α inhibitor for Alzheimer’s disease. Mol Pharm. 2017;14(7):2340–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 38.

    Hassett B, McMillen S, Fitzpatrick B. Characterization and comparison of commercially available TNF receptor 2-Fc fusion protein products: letter to the editor. MAbs. 2013;5(5):624–5.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 39.

    Dumont M, Stack C, Elipenahli C, Jainuddin S, Gerges M, Starkova NN, et al. Behavioral deficit, oxidative stress, and mitochondrial dysfunction precede tau pathology in P301S transgenic mice. Faseb j. 2011;25(11):4063–72.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 40.

    Takeuchi H, Iba M, Inoue H, Higuchi M, Takao K, Tsukita K, et al. P301S mutant human tau transgenic mice manifest early symptoms of human tauopathies with dementia and altered sensorimotor gating. PLoS ONE. 2011;6(6):e21050.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 41.

    Patel H, Martinez P, Perkins A, Taylor X, Jury N, McKinzie D, et al. Pathological tau and reactive astrogliosis are associated with distinct functional deficits in a mouse model of tauopathy. Neurobiol Aging. 2022;109:52–63.

    PubMed 

    Google Scholar
     

  • 42.

    Chang R, Knox J, Chang J, Derbedrossian A, Vasilevko V, Cribbs D, et al. Blood–brain barrier penetrating biologic TNF-alpha inhibitor for Alzheimer’s disease. Mol Pharm. 2017;14(7):2340–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 43.

    Chang R, Al Maghribi A, Vanderpoel V, Vasilevko V, Cribbs DH, Boado R, et al. Brain penetrating bifunctional erythropoietin-transferrin receptor antibody fusion protein for Alzheimer’s disease. Mol Pharm. 2018;15(11):4963–73.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 44.

    Sun J, Yang J, Whitman K, Zhu C, Cribbs DH, Boado RJ, et al. Hematologic safety of chronic brain-penetrating erythropoietin dosing in APP/PS1 mice. Alzheimers Dement (N Y). 2019;5:627–36.


    Google Scholar
     

  • 45.

    Pan B, Zhang H, Cui T, Wang X. TFEB activation protects against cardiac proteotoxicity via increasing autophagic flux. J Mol Cell Cardiol. 2017;113:51–62.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 46.

    Pan B, Li J, Parajuli N, Tian Z, Wu P, Lewno MT, et al. The calcineurin-TFEB-p62 pathway mediates the activation of cardiac macroautophagy by proteasomal malfunction. Circ Res. 2020;127(4):502–18.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 47.

    Castellanos DM, Sun J, Yang J, Ou W, Zambon AC, Pardridge WM, et al. Acute and chronic dosing of a high-affinity rat/mouse chimeric transferrin receptor antibody in mice. Pharmaceutics. 2020;12(9):852.

    CAS 
    PubMed Central 

    Google Scholar
     

  • 48.

    Yang J, Sun J, Castellanos DM, Pardridge WM, Sumbria RK. Eliminating Fc N-linked glycosylation and its impact on dosing consideration for a transferrin receptor antibody-erythropoietin fusion protein in mice. Mol Pharm. 2020;17(8):2831–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 49.

    Sun J, Boado RJ, Pardridge WM, Sumbria RK. Plasma pharmacokinetics of high-affinity transferrin receptor antibody-erythropoietin fusion protein is a function of effector attenuation in mice. Mol Pharm. 2019;16(8):3534–43.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 50.

    Pan B, Lewno MT, Wu P, Wang X. Highly dynamic changes in the activity and regulation of macroautophagy in hearts subjected to increased proteotoxic stress. Front Physiol. 2019;10:758.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 51.

    Sheffield LG, Marquis JG, Berman NE. Regional distribution of cortical microglia parallels that of neurofibrillary tangles in Alzheimer’s disease. Neurosci Lett. 2000;285(3):165–8.

    CAS 
    PubMed 

    Google Scholar
     

  • 52.

    Ishizawa K, Dickson DW. Microglial activation parallels system degeneration in progressive supranuclear palsy and corticobasal degeneration. J Neuropathol Exp Neurol. 2001;60(6):647–57.

    CAS 
    PubMed 

    Google Scholar
     

  • 53.

    Leyns CEG, Holtzman DM. Glial contributions to neurodegeneration in tauopathies. Mol Neurodegener. 2017;12(1):50.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 54.

    Zilka N, Kazmerova Z, Jadhav S, Neradil P, Madari A, Obetkova D, et al. Who fans the flames of Alzheimer’s disease brains? Misfolded tau on the crossroad of neurodegenerative and inflammatory pathways. J Neuroinflammation. 2012;9:47.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 55.

    Quintanilla RA, Orellana DI, Gonzalez-Billault C, Maccioni RB. Interleukin-6 induces Alzheimer-type phosphorylation of tau protein by deregulating the cdk5/p35 pathway. Exp Cell Res. 2004;295(1):245–57.

    CAS 
    PubMed 

    Google Scholar
     

  • 56.

    Li Y, Liu L, Barger SW, Griffin WS. Interleukin-1 mediates pathological effects of microglia on tau phosphorylation and on synaptophysin synthesis in cortical neurons through a p38-MAPK pathway. J Neurosci. 2003;23(5):1605–11.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 57.

    Sheng JG, Zhu SG, Jones RA, Griffin WS, Mrak RE. Interleukin-1 promotes expression and phosphorylation of neurofilament and tau proteins in vivo. Exp Neurol. 2000;163(2):388–91.

    CAS 
    PubMed 

    Google Scholar
     

  • 58.

    Gabbita SP, Johnson MF, Kobritz N, Eslami P, Poteshkina A, Varadarajan S, et al. Oral TNFα modulation alters neutrophil infiltration, improves cognition and diminishes tau and amyloid pathology in the 3xTgAD mouse model. PLoS ONE. 2015;10(10):e0137305.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 59.

    Mancuso R, Fryatt G, Cleal M, Obst J, Pipi E, Monzon-Sandoval J, et al. CSF1R inhibitor JNJ-40346527 attenuates microglial proliferation and neurodegeneration in P301S mice. Brain. 2019;142(10):3243–64.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 60.

    DiPatre PL, Gelman BB. Microglial cell activation in aging and Alzheimer disease: partial linkage with neurofibrillary tangle burden in the hippocampus. J Neuropathol Exp Neurol. 1997;56(2):143–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 61.

    Bellucci A, Westwood AJ, Ingram E, Casamenti F, Goedert M, Spillantini MG. Induction of inflammatory mediators and microglial activation in mice transgenic for mutant human P301S tau protein. Am J Pathol. 2004;165(5):1643–52.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 62.

    Paasila PJ, Davies DS, Kril JJ, Goldsbury C, Sutherland GT. The relationship between the morphological subtypes of microglia and Alzheimer’s disease neuropathology. Brain Pathol. 2019;29(6):726–40.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 63.

    Karperien A, Ahammer H, Jelinek HF. Quantitating the subtleties of microglial morphology with fractal analysis. Front Cell Neurosci. 2013;7:3.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 64.

    Wang J, Zhao D, Pan B, Fu Y, Shi F, Kouadir M, et al. Toll-like receptor 2 deficiency shifts PrP106-126-induced microglial activation from a neurotoxic to a neuroprotective phenotype. J Mol Neurosci. 2015;55(4):880–90.

    CAS 
    PubMed 

    Google Scholar
     

  • 65.

    Kozlowski C, Weimer RM. An automated method to quantify microglia morphology and application to monitor activation state longitudinally in vivo. PLoS ONE. 2012;7(2):e31814.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 66.

    Deczkowska A, Keren-Shaul H, Weiner A, Colonna M, Schwartz M, Amit I. Disease-associated microglia: a universal immune sensor of neurodegeneration. Cell. 2018;173(5):1073–81.

    CAS 
    PubMed 

    Google Scholar
     

  • 67.

    Nelson PT, Alafuzoff I, Bigio EH, Bouras C, Braak H, Cairns NJ, et al. Correlation of Alzheimer disease neuropathologic changes with cognitive status: a review of the literature. J Neuropathol Exp Neurol. 2012;71(5):362–81.

    PubMed 

    Google Scholar
     

  • 68.

    Malpetti M, Kievit RA, Passamonti L, Jones PS, Tsvetanov KA, Rittman T, et al. Microglial activation and tau burden predict cognitive decline in Alzheimer’s disease. Brain. 2020;143(5):1588–602.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 69.

    Poon VY, Choi S, Park M. Growth factors in synaptic function. Front Synaptic Neurosci. 2013;5:6.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 70.

    Bien-Ly N, Boswell CA, Jeet S, Beach TG, Hoyte K, Luk W, et al. Lack of widespread BBB disruption in Alzheimer’s disease models: focus on therapeutic antibodies. Neuron. 2015;88(2):289–97.

    CAS 
    PubMed 

    Google Scholar
     

  • 71.

    Iwai K. Diverse ubiquitin signaling in NF-kappaB activation. Trends Cell Biol. 2012;22(7):355–64.

    CAS 
    PubMed 

    Google Scholar
     

  • 72.

    Zhou QH, Boado RJ, Hui EK, Lu JZ, Pardridge WM. Chronic dosing of mice with a transferrin receptor monoclonal antibody-glial-derived neurotrophic factor fusion protein. Drug Metab Dispos. 2011;39(7):1149–54.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 73.

    Zhou H. Clinical pharmacokinetics of etanercept: a fully humanized soluble recombinant tumor necrosis factor receptor fusion protein. J Clin Pharmacol. 2005;45(5):490–7.

    CAS 
    PubMed 

    Google Scholar
     

  • 74.

    Korth-Bradley JM, Rubin AS, Hanna RK, Simcoe DK, Lebsack ME. The pharmacokinetics of etanercept in healthy volunteers. Ann Pharmacother. 2000;34(2):161–4.

    CAS 
    PubMed 

    Google Scholar
     

  • 75.

    Couch JA, Yu YJ, Zhang Y, Tarrant JM, Fuji RN, Meilandt WJ, et al. Addressing safety liabilities of TfR bispecific antibodies that cross the blood-brain barrier. Sci Transl Med. 2013;5(183):183ra57 (1–12).

    PubMed 

    Google Scholar
     

  • 76.

    Hyrich KL, Silman AJ, Watson KD, Symmons DP. Anti-tumour necrosis factor alpha therapy in rheumatoid arthritis: an update on safety. Ann Rheum Dis. 2004;63(12):1538–43.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 77.

    Pathare SK, Heycock C, Hamilton J. TNFalpha blocker-induced thrombocytopenia. Rheumatology (Oxford). 2006;45(10):1313–4.

    CAS 

    Google Scholar
     

  • 78.

    Propson NE, Roy ER, Litvinchuk A, Köhl J, Zheng H. Endothelial C3a receptor mediates vascular inflammation and blood–brain barrier permeability during aging. J Clin Invest. 2021;131(1).

  • 79.

    Iba M, Guo JL, McBride JD, Zhang B, Trojanowski JQ, Lee VM. Synthetic tau fibrils mediate transmission of neurofibrillary tangles in a transgenic mouse model of Alzheimer’s-like tauopathy. J Neurosci. 2013;33(3):1024–37.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 80.

    Pascoal TA, Benedet AL, Ashton NJ, Kang MS, Therriault J, Chamoun M, et al. Microglial activation and tau propagate jointly across Braak stages. Nat Med. 2021;27(9):1592–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)