• 1.

    Ruggiero SL. Bisphosphonate-related osteonecrosis of the jaw (BRONJ): initial discovery and subsequent development. J Oral Maxillofac Surg. 2009;67(5 Suppl):13–8.

    PubMed 

    Google Scholar
     

  • 2.

    Francis MD, Valent DJ. Historical perspectives on the clinical development of bisphosphonates in the treatment of bone diseases. J Musculoskelet Neuronal Interact. 2007;7(1):2–8.

    PubMed 

    Google Scholar
     

  • 3.

    Health CAfDaTi: CADTH rapid response reports. In: Denosumab versus zoledronic acid for men with osteoporosis: a review of clinical effectiveness and guidelines. Canadian Agency for Drugs and Technologies in Health; 2016.

  • 4.

    Deeks ED, Perry CM. Zoledronic acid: a review of its use in the treatment of osteoporosis. Drugs Aging. 2008;25(11):963–86.

    PubMed 

    Google Scholar
     

  • 5.

    Dhillon S. Zoledronic acid (Reclast((R)), Aclasta((R))): a review in osteoporosis. Drugs. 2016;76(17):1683–97.

    PubMed 

    Google Scholar
     

  • 6.

    Russell RG. Bisphosphonates: from bench to bedside. Ann N Y Acad Sci. 2006;1068:367–401.

    PubMed 

    Google Scholar
     

  • 7.

    Devogelaer JP. Modern therapy for Paget’s disease of bone: focus on bisphosphonates. Treat Endocrinol. 2002;1(4):241–57.

    PubMed 

    Google Scholar
     

  • 8.

    Russell RG. Bisphosphonates: the first 40 years. Bone. 2011;49(1):2–19.

    PubMed 

    Google Scholar
     

  • 9.

    Aljohani S, Fliefel R, Ihbe J, Kuhnisch J, Ehrenfeld M, Otto S. What is the effect of anti-resorptive drugs (ARDs) on the development of medication-related osteonecrosis of the jaw (MRONJ) in osteoporosis patients: a systematic review. J Craniomaxillofac Surg. 2017;45(9):1493–502.

    PubMed 

    Google Scholar
     

  • 10.

    Salvi GE, Aglietta M, Eick S, Sculean A, Lang NP, Ramseier CA. Reversibility of experimental peri-implant mucositis compared with experimental gingivitis in humans. Clin Oral Implant Res. 2012;23(2):182–90.


    Google Scholar
     

  • 11.

    Clever K, Schlegel KA, Kniha H, Conrads G, Rink L, Modabber A, Holzle F, Kniha K. Experimental peri-implant mucositis around titanium and zirconia implants in comparison to a natural tooth: part 2-clinical and microbiological parameters. Int J Oral Maxillofac Surg. 2019;48(4):560–5.

    PubMed 

    Google Scholar
     

  • 12.

    Kalyan S, Wang J, Quabius ES, Huck J, Wiltfang J, Baines JF, Kabelitz D. Systemic immunity shapes the oral microbiome and susceptibility to bisphosphonate-associated osteonecrosis of the jaw. J Transl Med. 2015;13:212.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 13.

    Holzinger D, Seemann R, Matoni N, Ewers R, Millesi W, Wutzl A. Effect of dental implants on bisphosphonate-related osteonecrosis of the jaws. J Oral Maxillofac Surg. 2014;72(10):1937.e1931-1938.


    Google Scholar
     

  • 14.

    Jacobsen C, Metzler P, Rossle M, Obwegeser J, Zemann W, Gratz KW. Osteopathology induced by bisphosphonates and dental implants: clinical observations. Clin Oral Investig. 2013;17(1):167–75.

    PubMed 

    Google Scholar
     

  • 15.

    Kwon TG, Lee CO, Park JW, Choi SY, Rijal G, Shin HI. Osteonecrosis associated with dental implants in patients undergoing bisphosphonate treatment. Clin Oral Implant Res. 2014;25(5):632–40.


    Google Scholar
     

  • 16.

    Lopez-Cedrun JL, Sanroman JF, Garcia A, Penarrocha M, Feijoo JF, Limeres J, Diz P. Oral bisphosphonate-related osteonecrosis of the jaws in dental implant patients: a case series. Br J Oral Maxillofac Surg. 2013;51(8):874–9.

    PubMed 

    Google Scholar
     

  • 17.

    Tam Y, Kar K, Nowzari H, Cha HS, Ahn KM. Osteonecrosis of the jaw after implant surgery in patients treated with bisphosphonates—a presentation of six consecutive cases. Clin Implant Dent Relat Res. 2014;16(5):751–61.

    PubMed 

    Google Scholar
     

  • 18.

    Ebetino FH, Hogan AM, Sun S, Tsoumpra MK, Duan X, Triffitt JT, Kwaasi AA, Dunford JE, Barnett BL, Oppermann U, et al. The relationship between the chemistry and biological activity of the bisphosphonates. Bone. 2011;49(1):20–33.

    PubMed 

    Google Scholar
     

  • 19.

    Anderson AC, Sanunu M, Schneider C, Clad A, Karygianni L, Hellwig E, Al-Ahmad A. Rapid species-level identification of vaginal and oral lactobacilli using MALDI-TOF MS analysis and 16S rDNA sequencing. BMC Microbiol. 2014;14:312–312.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Al-Ahmad A, Muzafferiy F, Anderson AC, Wölber JP, Ratka-Krüger P, Fretwurst T, Nelson K, Vach K, Hellwig E. Shift of microbial composition of peri-implantitis-associated oral biofilm as revealed by 16S rRNA gene cloning. J Med Microbiol. 2018;67(3):332–40.

    PubMed 

    Google Scholar
     

  • 21.

    He X, Reichl FX, Milz S, Michalke B, Wu X, Sprecher CM, Yang Y, Gahlert M, Röhling S, Kniha H, et al. Titanium and zirconium release from titanium- and zirconia implants in mini pig maxillae and their toxicity in vitro. Dent Mater. 2020;36(3):402–12.

    PubMed 

    Google Scholar
     

  • 22.

    Sprecher CM, Gahlert M, Rohling S, Kniha H, Gueorguiev B, Milz S. Comparison of imaging methods used for dental implant osseous integration assessment. J Mater Sci Mater Med. 2013;24(9):2195–200.

    PubMed 

    Google Scholar
     

  • 23.

    Gahlert M, Rohling S, Wieland M, Eichhorn S, Kuchenhoff H, Kniha H. A comparison study of the osseointegration of zirconia and titanium dental implants. A biomechanical evaluation in the maxilla of pigs. Clin Implant Dent Relat Res. 2010;12(4):297–305.

    PubMed 

    Google Scholar
     

  • 24.

    Ibrahim A, Heitzer M, Bock A, Peters F, Möhlhenrich SC, Hölzle F, Modabber A, Kniha K. Relationship between implant geometry and primary stability in different bony defects and variant bone densities: an in vitro study. Materials. 2020;13(19):4349.

    PubMed Central 

    Google Scholar
     

  • 25.

    Kniha K, Bock A, Peters F, Heitzer M, Modabber A, Kniha H, Hölzle F, Möhlhenrich SC. Aesthetic aspects of adjacent maxillary single-crown implants-influence of zirconia and titanium as implant materials. Int J Oral Maxillofac Surg. 2020;49(11):1489–96.

    PubMed 

    Google Scholar
     

  • 26.

    Kniha K, Schlegel KA, Kniha H, Modabber A, Neukam F, Kniha K. Papilla-crown height dimensions around zirconium dioxide implants in the esthetic area: a 3-year follow-up study. J Prosthodont. 2019;28(2):e694–8.

    PubMed 

    Google Scholar
     

  • 27.

    Kniha K, Kniha H, Grunert I, Edelhoff D, Holzle F, Modabber A. Esthetic evaluation of maxillary single-tooth zirconia implants in the esthetic zone. Int J Periodontics Restorative Dent. 2018;39:e195–201.

    PubMed 

    Google Scholar
     

  • 28.

    Bormann KH, Gellrich NC, Kniha H, Schild S, Weingart D, Gahlert M. A prospective clinical study to evaluate the performance of zirconium dioxide dental implants in single-tooth edentulous area: 3-year follow-up. BMC Oral Health. 2018;18(1):181.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 29.

    Kniha K, Modabber A, Kniha H, Mohlhenrich SC, Holzle F, Milz S. Dimensions of hard and soft tissue around adjacent, compared with single-tooth, zirconia implants. Br J Oral Maxillofac Surg. 2018;56(1):43–7.

    PubMed 

    Google Scholar
     

  • 30.

    Kniha K, Schlegel KA, Kniha H, Modabber A, Holzle F, Kniha K. Evaluation of peri-implant bone levels and soft tissue dimensions around zirconia implants-a three-year follow-up study. Int J Oral Maxillofac Surg. 2018;47(4):492–8.

    PubMed 

    Google Scholar
     

  • 31.

    Abtahi J, Agholme F, Sandberg O, Aspenberg P. Effect of local vs. systemic bisphosphonate delivery on dental implant fixation in a model of osteonecrosis of the jaw. J Dent Res. 2013;92(3):279–83.

    PubMed 

    Google Scholar
     

  • 32.

    Bernhardsson M, Sandberg O, Aspenberg P. Anti-RANKL treatment improves screw fixation in cancellous bone in rats. Injury. 2015;46(6):990–5.

    PubMed 

    Google Scholar
     

  • 33.

    Kniha K, Buhl EM, Hermanns-Sachweh B, Al-Sibai F, Bock A, Peters F, Hölzle F, Modabber A. Implant removal using thermal necrosis-an in vitro pilot study. Clin Oral Investig. 2020;25:265–73.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 34.

    Faul F, Erdfelder E, Buchner A, Lang AG. Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses. Behav Res Methods. 2009;41(4):1149–60.

    PubMed 

    Google Scholar
     

  • 35.

    Marcotte H, Lavoie MC. Oral microbial ecology and the role of salivary immunoglobulin A. Microbiol Mol Biol Rev. 1998;62(1):71–109.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 36.

    Jabbour Z, do Nascimento C, Kotake BG, El-Hakim M, Henderson JE, de Albuquerque Jr RF. Assessing the oral microbiota of healthy and alcohol-treated rats using whole-genome DNA probes from human bacteria. Arch Oral Biol. 2013;58(3):317–23.

    PubMed 

    Google Scholar
     

  • 37.

    Jabbour Z, de Nascimento C, El-Hakim M, Henderson JE, de Albuquerque Jr RF. Bacterial profile and bone healing in rats receiving cancer therapeutic doses of bisphosphonates and corticosteroids: a pilot study. Int J Oral Maxillofac Surg. 2016;45(9):1162–9.

    PubMed 

    Google Scholar
     

  • 38.

    Sun J, Eberhard J, Glage S, Held N, Voigt H, Schwabe K, Winkel A, Stiesch M. Development of a peri-implantitis model in the rat. Clin Oral Implant Res. 2020;31(3):203–14.


    Google Scholar
     

  • 39.

    Anderson AC, Hellwig E, Vespermann R, Wittmer A, Schmid M, Karygianni L, Al-Ahmad A. Comprehensive analysis of secondary dental root canal infections: a combination of culture and culture-independent approaches reveals new insights. PLoS ONE. 2012;7(11):e49576.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 40.

    Khosla S. Update in male osteoporosis. J Clin Endocrinol Metab. 2010;95(1):3–10.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 41.

    Xu Q, Zhan P, Li X, Mo F, Xu H, Liu Y, Lai Q, Zhang B, Dai M, Liu X. Bisphosphonate-enoxacin inhibit osteoclast formation and function by abrogating RANKL-induced JNK signalling pathways during osteoporosis treatment. J Cell Mol Med. 2021;25(21):10126–39.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 42.

    Isaias PHC, Silva PGB, do Nascimento IV, Verde M, Moreira MDS, Alves A, Sousa FB, Pereira KMA, Mota MRL. Effect of continuous and intermittent sodium alendronate oral dosing on post-extraction alveoli healing in rats. Arch Oral Biol. 2021;132:105291.

    PubMed 

    Google Scholar
     

  • 43.

    Gross C, Weber M, Creutzburg K, Möbius P, Preidl R, Amann K, Wehrhan F. Osteoclast profile of medication-related osteonecrosis of the jaw secondary to bisphosphonate therapy: a comparison with osteoradionecrosis and osteomyelitis. J Transl Med. 2017;15(1):128.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 44.

    Weinstein RS, Roberson PK, Manolagas SC. Giant osteoclast formation and long-term oral bisphosphonate therapy. N Engl J Med. 2009;360(1):53–62.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 45.

    Camacho-Alonso F, López-Jornet P, Vicente-Hernández A. Short-term effect of zoledronic acid upon fracture resistance of the mandibular condyle and femoral head in an animal model. Med Oral Patol Oral Cir Bucal. 2013;18(3):e421-426.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 46.

    Okata H, Nakamura M, Henmi A, Yamaguchi S, Mikami Y, Shimauchi H, Sasano Y. Calcification during bone healing in a standardised rat calvarial defect assessed by micro-CT and SEM-EDX. Oral Dis. 2015;21(1):74–82.

    PubMed 

    Google Scholar
     

  • 47.

    Kourkoumelis N, Balatsoukas I, Tzaphlidou M. Ca/P concentration ratio at different sites of normal and osteoporotic rabbit bones evaluated by Auger and energy dispersive X-ray spectroscopy. J Biol Phys. 2012;38(2):279–91.

    PubMed 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)