• 1.

    Abreu SC, Lopes-Pacheco M, Weiss DJ, Rocco PRM (2021) Mesenchymal Stromal Cell-Derived Extracellular Vesicles in Lung Diseases: Current Status and Perspectives. Front Cell Dev Biol 9:600711

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 2.

    Khoury M, Cuenca J, Cruz FF, Figueroa FE, Rocco PRM, Weiss DJ (2020) Current status of cell-based therapies for respiratory virus infections: applicability to COVID-19. Eur Respir J 55:8


    Google Scholar
     

  • 3.

    Jain S, Self WH, Wunderink RG, Team CES (2015) Community-Acquired Pneumonia Requiring Hospitalization. N Engl J Med 373:2382


    Google Scholar
     

  • 4.

    Choi SH, Hong SB, Ko GB, Lee Y, Park HJ, Park SY, Moon SM, Cho OH, Park KH, Chong YP, Kim SH, Huh JW, Sung H, Do KH, Lee SO, Kim MN, Jeong JY, Lim CM, Kim YS, Woo JH, Koh Y (2012) Viral infection in patients with severe pneumonia requiring intensive care unit admission. Am J Respir Crit Care Med 186:325–332

    PubMed 

    Google Scholar
     

  • 5.

    Centers for Disease Control and Prevention NCfIaRDN (2021) Burden of Influenza. Book Burden of Influenza, New York


    Google Scholar
     

  • 6.

    Iuliano AD, Roguski KM, Chang HH, Muscatello DJ, Palekar R, Tempia S, Cohen C, Gran JM, Schanzer D, Cowling BJ, Wu P, Kyncl J, Ang LW, Park M, Redlberger-Fritz M, Yu H, Espenhain L, Krishnan A, Emukule G, van Asten L, Pereira da Silva S, Aungkulanon S, Buchholz U, Widdowson MA, Bresee JS, Collaborator G-A, N, (2018) Estimates of global seasonal influenza-associated respiratory mortality: a modelling study. Lancet 391:1285–1300

    PubMed 

    Google Scholar
     

  • 7.

    Babcock HM, Merz LR, Fraser VJ (2006) Is influenza an influenza-like illness? Clinical presentation of influenza in hospitalized patients. Infect Control Hosp Epidemiol 27:266–270

    PubMed 

    Google Scholar
     

  • 8.

    Chow EJ, Doyle JD, Uyeki TM (2019) Influenza virus-related critical illness: prevention, diagnosis, treatment. Crit Care 23:214

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 9.

    Ramsey CD, Kumar A (2013) Influenza and endemic viral pneumonia. Crit Care Clin 29:1069–1086

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 10.

    Dandachi D, Rodriguez-Barradas MC (2018) Viral pneumonia: etiologies and treatment. J Investig Med 66:957–965

    PubMed 

    Google Scholar
     

  • 11.

    Murray CJ, Lopez AD, Chin B, Feehan D, Hill KH (2006) Estimation of potential global pandemic influenza mortality on the basis of vital registry data from the 1918–20 pandemic: a quantitative analysis. Lancet 368:2211–2218

    PubMed 

    Google Scholar
     

  • 12.

    Perez-Padilla R, de la Rosa-Zamboni D, Ponce de Leon S, Hernandez M, Quinones-Falconi F, Bautista E, Ramirez-Venegas A, Rojas-Serrano J, Ormsby CE, Corrales A, Higuera A, Mondragon E, Cordova-Villalobos JA, Influenza IWGo, (2009) Pneumonia and respiratory failure from swine-origin influenza A (H1N1) in Mexico. N Engl J Med 361:680–689

    CAS 
    PubMed 

    Google Scholar
     

  • 13.

    Writing Committee of the WHOCoCAoPI, Bautista E, Chotpitayasunondh T, Gao Z, Harper SA, Shaw M, Uyeki TM, Zaki SR, Hayden FG, Hui DS, Kettner JD, Kumar A, Lim M, Shindo N, Penn C, Nicholson KG (2010) Clinical aspects of pandemic 2009 influenza A (H1N1) virus infection. N Engl J Med 362:1708–1719


    Google Scholar
     

  • 14.

    To KK, Chan JF, Yuen KY (2014) Viral lung infections: epidemiology, virology, clinical features, and management of avian influenza A(H7N9). Curr Opin Pulm Med 20:225–232

    PubMed 

    Google Scholar
     

  • 15.

    Peiris JS, Yuen KY, Osterhaus AD, Stohr K (2003) The severe acute respiratory syndrome. N Engl J Med 349:2431–2441

    CAS 
    PubMed 

    Google Scholar
     

  • 16.

    Lee N, Qureshi ST (2013) Other viral pneumonias: coronavirus, respiratory syncytial virus, adenovirus, hantavirus. Crit Care Clin 29:1045–1068

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 17.

    Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA (2012) Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med 367:1814–1820

    CAS 
    PubMed 

    Google Scholar
     

  • 18.

    WHO (2021) Middle East respiratory syndrome coronavirus (MERS-CoV). In: Book Middle East respiratory syndrome coronavirus (MERS-CoV)

  • 19.

    Medicine JHU (2021) Coronavirus Resource Center – Global Map. In: Book Coronavirus Resource Center – Global Map

  • 20.

    Network C-IGobotR, the C-ICUI (2021) Clinical characteristics and day-90 outcomes of 4244 critically ill adults with COVID-19: a prospective cohort study. Intensive Care Med 47:60–73


    Google Scholar
     

  • 21.

    Grasselli G, Greco M, Zanella A, Albano G, Antonelli M, Bellani G, Bonanomi E, Cabrini L, Carlesso E, Castelli G, Cattaneo S, Cereda D, Colombo S, Coluccello A, Crescini G, Forastieri Molinari A, Foti G, Fumagalli R, Iotti GA, Langer T, Latronico N, Lorini FL, Mojoli F, Natalini G, Pessina CM, Ranieri VM, Rech R, Scudeller L, Rosano A, Storti E, Thompson BT, Tirani M, Villani PG, Pesenti A, Cecconi M, Network C-LI (2020) Risk Factors Associated With Mortality Among Patients With COVID-19 in Intensive Care Units in Lombardy, Italy. JAMA Intern Med 180:1345–1355

    CAS 
    PubMed 

    Google Scholar
     

  • 22.

    Wu C, Chen X, Cai Y, Xia J, Zhou X, Xu S, Huang H, Zhang L, Zhou X, Du C, Zhang Y, Song J, Wang S, Chao Y, Yang Z, Xu J, Zhou X, Chen D, Xiong W, Xu L, Zhou F, Jiang J, Bai C, Zheng J, Song Y (2020) Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med 180:934–943

    CAS 
    PubMed 

    Google Scholar
     

  • 23.

    Lim ZJ, Subramaniam A, Ponnapa Reddy M, Blecher G, Kadam U, Afroz A, Billah B, Ashwin S, Kubicki M, Bilotta F, Curtis JR, Rubulotta F (2021) Case fatality rates for patients with COVID-19 requiring invasive mechanical ventilation. a meta-analysis. Am J Respir Crit Care Med 203:54–66

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    Jung C, Flaatten H, Fjolner J, Bruno RR, Wernly B, Artigas A, Bollen Pinto B, Schefold JC, Wolff G, Kelm M, Beil M, Sviri S, van Heerden PV, Szczeklik W, Czuczwar M, Elhadi M, Joannidis M, Oeyen S, Zafeiridis T, Marsh B, Andersen FH, Moreno R, Cecconi M, Leaver S, Boumendil A, De Lange DW, Guidet B (2021) The impact of frailty on survival in elderly intensive care patients with COVID-19: the COVIP study. Crit Care 25:149

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 25.

    Gonzalez J, Benitez ID, Carmona P, Santisteve S, Monge A, Moncusi-Moix A, Gort-Paniello C, Pinilla L, Carratala A, Zuil M, Ferrer R, Ceccato A, Fernandez L, Motos A, Riera J, Menendez R, Garcia-Gasulla D, Penuelas O, Bermejo-Martin JF, Labarca G, Caballero J, Torres G, de Gonzalo-Calvo D, Torres A, Barbe F, Project C (2021) Pulmonary Function and Radiologic Features in Survivors of Critical COVID-19: A 3-Month Prospective Cohort. Chest 160:187–198


    Google Scholar
     

  • 26.

    Barbeta E, Benegas M, Sanchez M, Motos A, Ferrer M, Ceccato A, Lopez R, Bueno L, Artigas RM, Ferrando C, Fernandez-Barat L, Albacar N, Badia JR, Lopez T, Sandoval E, Toapanta D, Castro P, Soriano A, Torres A, Care CCC, G, (2021) Risk Factors and Clinical Impact of Fibrotic-Like Changes and the Organizing Pneumonia Pattern in Patients with COVID-19- and Non-COVID-19-induced Acute Respiratory Distress Syndrome. Arch Bronconeumol 23:9


    Google Scholar
     

  • 27.

    Matthay MA, Zemans RL, Zimmerman GA, Arabi YM, Beitler JR, Mercat A, Herridge M, Randolph AG, Calfee CS (2019) Acute respiratory distress syndrome. Nat Rev Dis Primers 5:18

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Hue S, Beldi-Ferchiou A, Bendib I, Surenaud M, Fourati S, Frapard T, Rivoal S, Razazi K, Carteaux G, Delfau-Larue MH, Mekontso-Dessap A, Audureau E, de Prost N (2020) Uncontrolled Innate and Impaired Adaptive Immune Responses in Patients with COVID-19 Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med 202:1509–1519

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 29.

    Matrosovich MN, Matrosovich TY, Gray T, Roberts NA, Klenk HD (2004) Human and avian influenza viruses target different cell types in cultures of human airway epithelium. Proc Natl Acad Sci U S A 101:4620–4624

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 30.

    Wang N, Shi X, Jiang L, Zhang S, Wang D, Tong P, Guo D, Fu L, Cui Y, Liu X, Arledge KC, Chen YH, Zhang L, Wang X (2013) Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4. Cell Res 23:986–993

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 31.

    Meyerholz DK, Lambertz AM, McCray PB Jr (2016) Dipeptidyl Peptidase 4 Distribution in the Human Respiratory Tract: Implications for the Middle East Respiratory Syndrome. Am J Pathol 186:78–86

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 32.

    Hoffmann M, Kleine-Weber H, Schroeder S, Kruger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, Muller MA, Drosten C, Pohlmann S, (2020) SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 181: 271–280

  • 33.

    Lambert DW, Yarski M, Warner FJ, Thornhill P, Parkin ET, Smith AI, Hooper NM, Turner AJ (2005) Tumor necrosis factor-alpha convertase (ADAM17) mediates regulated ectodomain shedding of the severe-acute respiratory syndrome-coronavirus (SARS-CoV) receptor, angiotensin-converting enzyme-2 (ACE2). J Biol Chem 280:30113–30119

    CAS 
    PubMed 

    Google Scholar
     

  • 34.

    Heurich A, Hofmann-Winkler H, Gierer S, Liepold T, Jahn O, Pohlmann S (2014) TMPRSS2 and ADAM17 cleave ACE2 differentially and only proteolysis by TMPRSS2 augments entry driven by the severe acute respiratory syndrome coronavirus spike protein. J Virol 88:1293–1307

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 35.

    Clementi N, Ghosh S, De Santis M, Castelli M, Criscuolo E, Zanoni I, Clementi M, Mancini N (2021) Viral Respiratory Pathogens and Lung Injury. Clin Microbiol Rev 34:87


    Google Scholar
     

  • 36.

    McElvaney OJ, McEvoy NL, McElvaney OF, Carroll TP, Murphy MP, Dunlea DM, Ni Choileain O, Clarke J, O’Connor E, Hogan G, Ryan D, Sulaiman I, Gunaratnam C, Branagan P, O’Brien ME, Morgan RK, Costello RW, Hurley K, Walsh S, de Barra E, McNally C, McConkey S, Boland F, Galvin S, Kiernan F, O’Rourke J, Dwyer R, Power M, Geoghegan P, Larkin C, O’Leary RA, Freeman J, Gaffney A, Marsh B, Curley GF, McElvaney NG (2020) Characterization of the Inflammatory Response to Severe COVID-19 Illness. Am J Respir Crit Care Med 202:812–821

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 37.

    Chen G, Wu D, Guo W, Cao Y, Huang D, Wang H, Wang T, Zhang X, Chen H, Yu H, Zhang X, Zhang M, Wu S, Song J, Chen T, Han M, Li S, Luo X, Zhao J, Ning Q (2020) Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest 130:2620–2629

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 38.

    Schulert GS, Zhang M, Fall N, Husami A, Kissell D, Hanosh A, Zhang K, Davis K, Jentzen JM, Napolitano L, Siddiqui J, Smith LB, Harms PW, Grom AA, Cron RQ (2016) Whole-Exome Sequencing Reveals Mutations in Genes Linked to Hemophagocytic Lymphohistiocytosis and Macrophage Activation Syndrome in Fatal Cases of H1N1 Influenza. J Infect Dis 213:1180–1188

    CAS 
    PubMed 

    Google Scholar
     

  • 39.

    Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ, Collaboration HAS, UK, (2020) COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet 395:1033–1034

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 40.

    Sinha P, Matthay MA, Calfee CS (2020) Is a “Cytokine Storm” Relevant to COVID-19? JAMA Intern Med 180:1152–1154

    CAS 
    PubMed 

    Google Scholar
     

  • 41.

    McElvaney OJ, Curley GF, Rose-John S, McElvaney NG (2021) Interleukin-6: obstacles to targeting a complex cytokine in critical illness. Lancet Respir Med 9:643–654

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 42.

    Palmas F, Clarke J, Colas RA, Gomez EA, Keogh A, Boylan M, McEvoy N, McElvaney OJ, McElvaney O, Alalqam R, McElvaney NG, Curley GF, Dalli J (2021) Dysregulated plasma lipid mediator profiles in critically ill COVID-19 patients. PLoS ONE 16:e0256226

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 43.

    Blanco-Melo D, Nilsson-Payant BE, Liu WC, Uhl S, Hoagland D, Moller R, Jordan TX, Oishi K, Panis M, Sachs D, Wang TT, Schwartz RE, Lim JK, Albrecht RA, tenOever BR (2020) Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19. Cell 181:1036–1045

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 44.

    Zhou Z, Ren L, Zhang L, Zhong J, Xiao Y, Jia Z, Guo L, Yang J, Wang C, Jiang S, Yang D, Zhang G, Li H, Chen F, Xu Y, Chen M, Gao Z, Yang J, Dong J, Liu B, Zhang X, Wang W, He K, Jin Q, Li M, Wang J (2020) Heightened Innate Immune Responses in the Respiratory Tract of COVID-19 Patients. Cell Host Microbe 27:883–890

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 45.

    Shuai H, Chu H, Hou Y, Yang D, Wang Y, Hu B, Huang X, Zhang X, Chai Y, Cai JP, Chan JF, Yuen KY (2020) Differential immune activation profile of SARS-CoV-2 and SARS-CoV infection in human lung and intestinal cells: Implications for treatment with IFN-beta and IFN inducer. J Infect 81:e1–e10

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 46.

    Channappanavar R, Fehr AR, Vijay R, Mack M, Zhao J, Meyerholz DK, Perlman S (2016) Dysregulated Type I Interferon and Inflammatory Monocyte-Macrophage Responses Cause Lethal Pneumonia in SARS-CoV-Infected Mice. Cell Host Microbe 19:181–193

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 47.

    Ackermann M, Verleden SE, Kuehnel M, Haverich A, Welte T, Laenger F, Vanstapel A, Werlein C, Stark H, Tzankov A, Li WW, Li VW, Mentzer SJ, Jonigk D (2020) Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. N Engl J Med 383:120–128

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 48.

    Hamming I, Timens W, Bulthuis ML, Lely AT, Navis G, van Goor H (2004) Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol 203:631–637

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 49.

    Varga Z, Flammer AJ, Steiger P, Haberecker M, Andermatt R, Zinkernagel AS, Mehra MR, Schuepbach RA, Ruschitzka F, Moch H (2020) Endothelial cell infection and endotheliitis in COVID-19. Lancet 395:1417–1418

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 50.

    Ward SE, Fogarty H, Karampini E, Lavin M, Schneppenheim S, Dittmer R, Morrin H, Glavey S, Ni Cheallaigh C, Bergin C, Martin-Loeches I, Mallon PW, Curley GF, Baker RI, Budde U, O’Sullivan JM, Krish JS (2021) ADAMTS13 regulation of VWF multimer distribution in severe COVID-19. J Thromb Haemost 19:1914–1921

    CAS 
    PubMed 

    Google Scholar
     

  • 51.

    Prevention CCfdca (2021) Influenza (Flu) For Clinicians: Antiviral Medication. In: Book Influenza (Flu) For Clinicians: Antiviral Medication

  • 52.

    Bai Y, Jones JC, Wong SS, Zanin M (2021) Antivirals Targeting the Surface Glycoproteins of Influenza Virus: Mechanisms of Action and Resistance. Viruses 13:3


    Google Scholar
     

  • 53.

    Control EECfDPa (2017) Expert opinion on neuraminidase inhibitors for the prevention and treatment of influenza. In: Book Expert opinion on neuraminidase inhibitors for the preventiona and treatment of influenza. ECDC

  • 54.

    Hayden FG, Shindo N (2019) Influenza virus polymerase inhibitors in clinical development. Curr Opin Infect Dis 32:176–186

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 55.

    Ikematsu H, Kawai N, Iwaki N, Kashiwagi S (2017) Duration of fever and other symptoms after the inhalation of laninamivir octanoate hydrate; comparison of the 2011/12 to 2015/16 Japanese influenza seasons. J Infect Chemother 23:627–633

    PubMed 

    Google Scholar
     

  • 56.

    Hayden F (2009) Developing new antiviral agents for influenza treatment: what does the future hold? Clin Infect Dis 48(Suppl 1):S3-13

    CAS 
    PubMed 

    Google Scholar
     

  • 57.

    Ison MG, Portsmouth S, Yoshida Y, Shishido T, Mitchener M, Tsuchiya K, Uehara T, Hayden FG (2020) Early treatment with baloxavir marboxil in high-risk adolescent and adult outpatients with uncomplicated influenza (CAPSTONE-2): a randomised, placebo-controlled, phase 3 trial. Lancet Infect Dis 20:1204–1214

    CAS 
    PubMed 

    Google Scholar
     

  • 58.

    Mtambo SE, Amoako DG, Somboro AM, Agoni C, Lawal MM, Gumede NS, Khan RB, Kumalo HM (2021) Influenza Viruses: Harnessing the Crucial Role of the M2 Ion-Channel and Neuraminidase toward Inhibitor Design. Molecules 26:67


    Google Scholar
     

  • 59.

    Han J, Perez J, Schafer A, Cheng H, Peet N, Rong L, Manicassamy B (2018) Influenza Virus: Small Molecule Therapeutics and Mechanisms of Antiviral Resistance. Curr Med Chem 25:5115–5127

    CAS 
    PubMed 

    Google Scholar
     

  • 60.

    Herold S, Hoegner K, Vadasz I, Gessler T, Wilhelm J, Mayer K, Morty RE, Walmrath HD, Seeger W, Lohmeyer J (2014) Inhaled granulocyte/macrophage colony-stimulating factor as treatment of pneumonia-associated acute respiratory distress syndrome. Am J Respir Crit Care Med 189:609–611

    PubMed 

    Google Scholar
     

  • 61.

    Paine R 3rd, Standiford TJ, Dechert RE, Moss M, Martin GS, Rosenberg AL, Thannickal VJ, Burnham EL, Brown MB, Hyzy RC (2012) A randomized trial of recombinant human granulocyte-macrophage colony stimulating factor for patients with acute lung injury. Crit Care Med 40:90–97

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 62.

    Halstead ES, Umstead TM, Davies ML, Kawasawa YI, Silveyra P, Howyrlak J, Yang L, Guo W, Hu S, Hewage EK, Chroneos ZC (2018) GM-CSF overexpression after influenza a virus infection prevents mortality and moderates M1-like airway monocyte/macrophage polarization. Respir Res 19:3

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 63.

    Services. USDoHH (2019) Influenza Therapeutics Program. In: Book Influenza Therapeutics Program

  • 64.

    Services. USDoHH (2019) Influenza & emerging infectious diseases. In: Book influenza & emerging infectious diseases

  • 65.

    Beigel JH, Nam HH, Adams PL, Krafft A, Ince WL, El-Kamary SS, Sims AC (2019) Advances in respiratory virus therapeutics – A meeting report from the 6th isirv Antiviral Group conference. Antiviral Res 167:45–67

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 66.

    Weis S, TeVelthuis AJW (2021) Influenza Virus RNA Synthesis and the Innate Immune Response. Viruses 13:8


    Google Scholar
     

  • 67.

    Bahadoran A, Bezavada L, Smallwood HS (2020) Fueling influenza and the immune response: Implications for metabolic reprogramming during influenza infection and immunometabolism. Immunol Rev 295:140–166

    CAS 
    PubMed 

    Google Scholar
     

  • 68.

    Land WG (2021) Role of DAMPs in respiratory virus-induced acute respiratory distress syndrome-with a preliminary reference to SARS-CoV-2 pneumonia. Genes Immun 22:141–160

    CAS 
    PubMed 

    Google Scholar
     

  • 69.

    McIntyre LA, Moher D, Fergusson DA, Sullivan KJ, Mei SH, Lalu M, Marshall J, McLeod M, Griffin G, Grimshaw J, Turgeon A, Avey MT, Rudnicki MA, Jazi M, Fishman J, Stewart DJ, Biology CCCT, G, (2016) Efficacy of Mesenchymal Stromal Cell Therapy for Acute Lung Injury in Preclinical Animal Models: A Systematic Review. PLoS ONE 11:e0147170

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 70.

    Masterson CH, Curley GF, Laffey JG (2019) Modulating the distribution and fate of exogenously delivered MSCs to enhance therapeutic potential: knowns and unknowns. Intensive Care Med Exp 7:41

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 71.

    Masterson CH, Tabuchi A, Hogan G, Fitzpatrick G, Kerrigan SW, Jerkic M, Kuebler WM, Laffey JG, Curley GF (2021) Intra-vital imaging of mesenchymal stromal cell kinetics in the pulmonary vasculature during infection. Sci Rep 11:5265

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 72.

    Armitage J, Tan DBA, Troedson R, Young P, Lam KV, Shaw K, Sturm M, Weiss DJ, Moodley YP (2018) Mesenchymal stromal cell infusion modulates systemic immunological responses in stable COPD patients: a phase I pilot study. Eur Respir J 51:8


    Google Scholar
     

  • 73.

    Waterman RS, Tomchuck SL, Henkle SL, Betancourt AM (2010) A new mesenchymal stem cell (MSC) paradigm: polarization into a pro-inflammatory MSC1 or an Immunosuppressive MSC2 phenotype. PLoS ONE 5:e10088

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 74.

    Kusuma GD, Carthew J, Lim R, Frith JE (2017) Effect of the Microenvironment on Mesenchymal Stem Cell Paracrine Signaling: Opportunities to Engineer the Therapeutic Effect. Stem Cells Dev 26:617–631

    CAS 
    PubMed 

    Google Scholar
     

  • 75.

    Islam D, Huang Y, Fanelli V, Delsedime L, Wu S, Khang J, Han B, Grassi A, Li M, Xu Y, Luo A, Wu J, Liu X, McKillop M, Medin J, Qiu H, Zhong N, Liu M, Laffey J, Li Y, Zhang H (2019) Identification and modulation of microenvironment is crucial for effective mesenchymal stromal cell therapy in acute lung injury. Am J Respir Crit Care Med 199:1214–1224

    CAS 
    PubMed 

    Google Scholar
     

  • 76.

    Ullah M, Liu DD, Thakor AS (2019) Mesenchymal Stromal Cell Homing: Mechanisms and Strategies for Improvement. Science 15:421–438

    CAS 

    Google Scholar
     

  • 77.

    Murray LMA, Krasnodembskaya AD (2019) Concise Review: Intercellular Communication Via Organelle Transfer in the Biology and Therapeutic Applications of Stem Cells. Stem Cells 37:14–25

    PubMed 

    Google Scholar
     

  • 78.

    Maron-Gutierrez T, Rocco PRM (2020) Cell-Free Therapies: Novel Approaches for COVID-19. Front Immunol 11:583017

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 79.

    Islam MN, Das SR, Emin MT, Wei M, Sun L, Westphalen K, Rowlands DJ, Quadri SK, Bhattacharya S, Bhattacharya J (2012) Mitochondrial transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury. Nat Med 18:759–765

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 80.

    de Carvalho LRP, Abreu SC, de Castro LL, Andrade da Silva LH, Silva PM, Vieira JB, Santos RT, Cabral MR, Khoury M, Weiss DJ, Lopes-Pacheco M, Silva PL, Cruz FF, Rocco PRM (2021) Mitochondria-Rich Fraction Isolated From Mesenchymal Stromal Cells Reduces Lung and Distal Organ Injury in Experimental Sepsis. Crit Care Med 49:e880

    PubMed 

    Google Scholar
     

  • 81.

    Moll G, Drzeniek N, Kamhieh-Milz J, Geissler S, Volk HD, Reinke P (2020) MSC Therapies for COVID-19: Importance of Patient Coagulopathy, Thromboprophylaxis, Cell Product Quality and Mode of Delivery for Treatment Safety and Efficacy. Front Immunol 11:1091

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 82.

    Weiss DJ, English K, Krasnodembskaya A, Isaza-Correa JM, Hawthorne IJ, Mahon BP (2019) The Necrobiology of Mesenchymal Stromal Cells Affects Therapeutic Efficacy. Front Immunol 10:1228

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 83.

    Reddy K, Calfee CS, McAuley DF (2021) Acute Respiratory Distress Syndrome Subphenotypes beyond the Syndrome: A Step toward Treatable Traits? Am J Respir Crit Care Med 203:1449–1451

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 84.

    Horie S, Gaynard S, Murphy M, Barry F, Scully M, O’Toole D, Laffey JG (2020) Cytokine pre-activation of cryopreserved xenogeneic-free human mesenchymal stromal cells enhances resolution and repair following ventilator-induced lung injury potentially via a KGF-dependent mechanism. Intensive Care Med Exp 8:8

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 85.

    Rolandsson Enes S, Hampton TH, Barua J, McKenna DH, Dos Santos CC, Amiel E, Ashare A, Liu KD, Krasnodembskaya AD, English K, Stanton BA, Rocco PRM, Matthay MA, Weiss DJ (2021) Healthy versus inflamed lung environments differentially effect MSCs. Eur Respir J 7:89


    Google Scholar
     

  • 86.

    Bustos ML, Huleihel L, Meyer EM, Donnenberg AD, Donnenberg VS, Sciurba JD, Mroz L, McVerry BJ, Ellis BM, Kaminski N, Rojas M (2013) Activation of human mesenchymal stem cells impacts their therapeutic abilities in lung injury by increasing interleukin (IL)-10 and IL-1RN levels. Stem Cells Transl Med 2:884–895

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 87.

    Abreu SC, Rolandsson Enes S, Dearborn J, Goodwin M, Coffey A, Borg ZD, Dos Santos CC, Wargo MJ, Cruz FF, Loi R, DeSarno M, Ashikaga T, Antunes MA, Rocco PRM, Liu KD, Lee JW, Matthay MA, McKenna DH, Weiss DJ (2019) Lung inflammatory environments differentially alter mesenchymal stromal cell behavior. Am J Physiol Lung Cell Mol Physiol 317:L823–L831

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 88.

    Abreu SC, Xisto DG, de Oliveira TB, Blanco NG, de Castro LL, Kitoko JZ, Olsen PC, Lopes-Pacheco M, Morales MM, Weiss DJ, Rocco PRM (2019) Serum from Asthmatic Mice Potentiates the Therapeutic Effects of Mesenchymal Stromal Cells in Experimental Allergic Asthma. Stem Cells Transl Med 8:301–312

    CAS 
    PubMed 

    Google Scholar
     

  • 89.

    Abreu SC, Hampton TH, Hoffman E, Dearborn J, Ashare A, Singh Sidhu K, Matthews DE, McKenna DH, Amiel E, Barua J, Krasnodembskaya A, English K, Mahon B, Dos Santos C, Cruz FF, Chambers DC, Liu KD, Matthay MA, Cramer RA, Stanton BA, Rocco PRM, Wargo MJ, Weiss DJ, Rolandsson Enes S (2020) Differential effects of the cystic fibrosis lung inflammatory environment on mesenchymal stromal cells. Am J Physiol Lung Cell Mol Physiol 319:L908–L925

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 90.

    Noronha NC, Mizukami A, Caliari-Oliveira C, Cominal JG, Rocha JLM, Covas DT, Swiech K, Malmegrim KCR (2019) Priming approaches to improve the efficacy of mesenchymal stromal cell-based therapies. Stem Cell Res Ther 10:131

    PubMed 

    Google Scholar
     

  • 91.

    Hayes M, Curley GF, Masterson C, Devaney J, O’Toole D, Laffey JG (2015) Mesenchymal stromal cells are more effective than the MSC secretome in diminishing injury and enhancing recovery following ventilator-induced lung injury. Intensive Care Med Exp 3:29

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 92.

    Eleuteri S, Fierabracci A (2019) Insights into the Secretome of Mesenchymal Stem Cells and Its Potential Applications. Int J Mol Sci 20:7


    Google Scholar
     

  • 93.

    McCarthy SD, Horgan E, Ali A, Masterson C, Laffey JG, MacLoughlin R, O’Toole D (2020) Nebulized Mesenchymal Stem Cell Derived Conditioned Medium Retains Antibacterial Properties Against Clinical Pathogen Isolates. J Aerosol Med Pulm Drug Deliv 33:140–152

    CAS 
    PubMed 

    Google Scholar
     

  • 94.

    Shi M-M, Yang Q-Y, Monsel A, Yan J-Y, Dai C-X, Zhao J-Y, Shi G-C, Zhou M, Zhu X-M, Li S-K, Li P, Wang J, Li M, Lei J-G, Xu D, Zhu Y-G, Qu J-M (2021) Preclinical efficacy and clinical safety of clinical-grade nebulized allogenic adipose mesenchymal stromal cells-derived extracellular vesicles. J Extracellular Vesicles 10:e12134

    CAS 

    Google Scholar
     

  • 95.

    Lee JW, Krasnodembskaya A, McKenna DH, Song Y, Abbott J, Matthay MA (2013) Therapeutic effects of human mesenchymal stem cells in ex vivo human lungs injured with live bacteria. Am J Respir Crit Care Med 187:751–760

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 96.

    Monsel A, Zhu YG, Gennai S, Hao Q, Hu S, Rouby JJ, Rosenzwajg M, Matthay MA, Lee JW (2015) Therapeutic Effects of Human Mesenchymal Stem Cell-derived Microvesicles in Severe Pneumonia in Mice. Am J Respir Crit Care Med 192:324–336

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 97.

    Cruz FF, Weiss DJ, Rocco PR (2016) Prospects and progress in cell therapy for acute respiratory distress syndrome. Expert Opin Biol Ther 16:1353–1360

    CAS 
    PubMed 

    Google Scholar
     

  • 98.

    Laffey JG, Matthay MA (2017) Fifty Years of Research in ARDS. Cell-based Therapy for Acute Respiratory Distress Syndrome. Biology and Potential Therapeutic Value. Am J Respir Crit Care Med 196:266–273

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 99.

    Polchert D, Sobinsky J, Douglas G, Kidd M, Moadsiri A, Reina E, Genrich K, Mehrotra S, Setty S, Smith B, Bartholomew A (2008) IFN-gamma activation of mesenchymal stem cells for treatment and prevention of graft versus host disease. Eur J Immunol 38:1745–1755

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 100.

    Liu X, Feng T, Gong T, Shen C, Zhu T, Wu Q, Li Q, Li H (2015) Human Umbilical Cord Mesenchymal Stem Cells Inhibit the Function of Allogeneic Activated Vgamma9Vdelta2 T Lymphocytes In Vitro. Biomed Res Int 2015:317801

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 101.

    Monguio-Tortajada M, Bayes-Genis A, Rosell A, Roura S (2021) Are mesenchymal stem cells and derived extracellular vesicles valuable to halt the COVID-19 inflammatory cascade? Current evidence and future perspectives. Thorax 76:196–200

    PubMed 

    Google Scholar
     

  • 102.

    Chan MC, Kuok DI, Leung CY, Hui KP, Valkenburg SA, Lau EH, Nicholls JM, Fang X, Guan Y, Lee JW, Chan RW, Webster RG, Matthay MA, Peiris JS (2016) Human mesenchymal stromal cells reduce influenza A H5N1-associated acute lung injury in vitro and in vivo. Proc Natl Acad Sci U S A 113:3621–3626

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 103.

    Li Y, Xu J, Shi W, Chen C, Shao Y, Zhu L, Lu W, Han X (2016) Mesenchymal stromal cell treatment prevents H9N2 avian influenza virus-induced acute lung injury in mice. Stem Cell Res Ther 7:159

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 104.

    Loy H, Kuok DIT, Hui KPY, Choi MHL, Yuen W, Nicholls JM, Peiris JSM, Chan MCW (2019) Therapeutic Implications of Human Umbilical Cord Mesenchymal Stromal Cells in Attenuating Influenza A(H5N1) Virus-Associated Acute Lung Injury. J Infect Dis 219:186–196

    CAS 
    PubMed 

    Google Scholar
     

  • 105.

    Darwish I, Banner D, Mubareka S, Kim H, Besla R, Kelvin DJ, Kain KC, Liles WC (2013) Mesenchymal stromal (stem) cell therapy fails to improve outcomes in experimental severe influenza. PLoS ONE 8:e71761

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 106.

    Gotts JE, Abbott J, Matthay MA (2014) Influenza causes prolonged disruption of the alveolar-capillary barrier in mice unresponsive to mesenchymal stem cell therapy. Am J Physiol Lung Cell Mol Physiol 307:L395-406

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 107.

    Deng W, Bao L, Liu J, Xiao C, Liu J, Xue J, Lv Q, Qi F, Gao H, Yu P, Xu Y, Qu Y, Li F, Xiang Z, Yu H, Gong S, Liu M, Wang G, Wang S, Song Z, Liu Y, Zhao W, Han Y, Zhao L, Liu X, Wei Q, Qin C (2020) Primary exposure to SARS-CoV-2 protects against reinfection in rhesus macaques. Science 369:818–823

    CAS 
    PubMed 

    Google Scholar
     

  • 108.

    Bao L, Deng W, Huang B, Gao H, Liu J, Ren L, Wei Q, Yu P, Xu Y, Qi F, Qu Y, Li F, Lv Q, Wang W, Xue J, Gong S, Liu M, Wang G, Wang S, Song Z, Zhao L, Liu P, Zhao L, Ye F, Wang H, Zhou W, Zhu N, Zhen W, Yu H, Zhang X, Guo L, Chen L, Wang C, Wang Y, Wang X, Xiao Y, Sun Q, Liu H, Zhu F, Ma C, Yan L, Yang M, Han J, Xu W, Tan W, Peng X, Jin Q, Wu G, Qin C (2020) The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice. Nature 583:830–833

    CAS 
    PubMed 

    Google Scholar
     

  • 109.

    Abreu SC, Weiss DJ, Rocco PR (2016) Extracellular vesicles derived from mesenchymal stromal cells: a therapeutic option in respiratory diseases? Stem Cell Res Ther 7:53

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 110.

    Phelps J, Sanati-Nezhad A, Ungrin M, Duncan NA, Sen A (2018) Bioprocessing of Mesenchymal Stem Cells and Their Derivatives: Toward Cell-Free Therapeutics. Stem Cells Int 2018:9415367

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 111.

    Khatri M, Richardson LA, Meulia T (2018) Mesenchymal stem cell-derived extracellular vesicles attenuate influenza virus-induced acute lung injury in a pig model. Stem Cell Res Ther 9:17

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 112.

    Thompson M, Mei SHJ, Wolfe D, Champagne J, Fergusson D, Stewart DJ, Sullivan KJ, Doxtator E, Lalu M, English SW, Granton J, Hutton B, Marshall J, Maybee A, Walley KR, Santos CD, Winston B, McIntyre L (2020) Cell therapy with intravascular administration of mesenchymal stromal cells continues to appear safe: An updated systematic review and meta-analysis. E Clin Med 19:100249


    Google Scholar
     

  • 113.

    Gorman E, Millar J, McAuley D, O’Kane C (2021) Mesenchymal stromal cells for acute respiratory distress syndrome (ARDS), sepsis, and COVID-19 infection: optimizing the therapeutic potential. Expert Rev Respir Med 15:301–324

    CAS 
    PubMed 

    Google Scholar
     

  • 114.

    Bellingan G, Jacono F, Bannard-Smith J, Brealey D, Meyer N, Thickett D, Young D, Bentley A, McVerry BJ, Wunderink RG, Doerschug KC, Summers C, Rojas M, Ting A, Jenkins ED (2021) Safety and efficacy of multipotent adult progenitor cells in acute respiratory distress syndrome (MUST-ARDS): a multicentre, randomised, double-blind, placebo-controlled phase 1/2 trial. Intensive Care Med 23:1–9. https://doi.org/10.1007/s00134-021-06570-4

  • 115.

    Wick KD, Leligdowicz A, Zhuo H, Ware LB, Matthay MA (2021) Mesenchymal stromal cells reduce evidence of lung injury in patients with ARDS. JCI Insight 6:45


    Google Scholar
     

  • 116.

    Chen J, Hu C, Chen L, Tang L, Zhu Y, Xu X, Chen L, Gao H, Lu X, Yu L, Dai X, Xiang C, Li L (2020) Clinical Study of Mesenchymal Stem Cell Treatment for Acute Respiratory Distress Syndrome Induced by Epidemic Influenza A (H7N9) Infection: A Hint for COVID-19 Treatment. Engineering (Beijing) 6:1153–1161

    CAS 

    Google Scholar
     

  • 117.

    Shi L, Huang H, Lu X, Yan X, Jiang X, Xu R, Wang S, Zhang C, Yuan X, Xu Z, Huang L, Fu JL, Li Y, Zhang Y, Yao WQ, Liu T, Song J, Sun L, Yang F, Zhang X, Zhang B, Shi M, Meng F, Song Y, Yu Y, Wen J, Li Q, Mao Q, Maeurer M, Zumla A, Yao C, Xie WF, Wang FS (2021) Effect of human umbilical cord-derived mesenchymal stem cells on lung damage in severe COVID-19 patients: a randomized, double-blind, placebo-controlled phase 2 trial. Signal Transduct Target Ther 6:58

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 118.

    Lanzoni G, Linetsky E, Correa D, Messinger Cayetano S, Alvarez RA, Kouroupis D, Alvarez Gil A, Poggioli R, Ruiz P, Marttos AC, Hirani K, Bell CA, Kusack H, Rafkin L, Baidal D, Pastewski A, Gawri K, Lenero C, Mantero AMA, Metalonis SW, Wang X, Roque L, Masters B, Kenyon NS, Ginzburg E, Xu X, Tan J, Caplan AI, Glassberg MK, Alejandro R, Ricordi C (2021) Umbilical cord mesenchymal stem cells for COVID-19 acute respiratory distress syndrome: A double-blind, phase 1/2a, randomized controlled trial. Stem Cells Transl Med 10:660–673

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 119.

    Dilogo IH, Aditianingsih D, Sugiarto A, Burhan E, Damayanti T, Sitompul PA, Mariana N, Antarianto RD, Liem IK, Kispa T, Mujadid F, Novialdi N, Luviah E, Kurniawati T, Lubis AMT, Rahmatika D (2021) Umbilical cord mesenchymal stromal cells as critical COVID-19 adjuvant therapy: A randomized controlled trial. Stem Cells Transl Med 8:563


    Google Scholar
     

  • 120.

    Gorman E, Shankar-Hari M, Hopkins P, Tunnicliffe WS, Perkins GD, Silversides J, McGuigan P, Jackson C, Boyle R, McFerran J, McDowell C, Campbell C, McFarland M, Smythe J, Thompson J, Williams B, Curley G, Laffey JG, Clarke M, O’Kane C, McAuley DF (2020) Repair of Acute Respiratory Distress Syndrome by Stromal Cell Administration in COVID-19 (REALIST-COVID-19): A structured summary of a study protocol for a randomised, controlled trial. Trials 21:462

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 121.

    Wilson JG, Liu KD, Zhuo H, Caballero L, McMillan M, Fang X, Cosgrove K, Vojnik R, Calfee CS, Lee JW, Rogers AJ, Levitt J, Wiener-Kronish J, Bajwa EK, Leavitt A, McKenna D, Thompson BT, Matthay MA (2015) Mesenchymal stem (stromal) cells for treatment of ARDS: a phase 1 clinical trial. Lancet Respir Med 3:24–32

    PubMed 

    Google Scholar
     

  • 122.

    Matthay MA, Calfee CS, Zhuo H, Thompson BT, Wilson JG, Levitt JE, Rogers AJ, Gotts JE, Wiener-Kronish JP, Bajwa EK, Donahoe MP, McVerry BJ, Ortiz LA, Exline M, Christman JW, Abbott J, Delucchi KL, Caballero L, McMillan M, McKenna DH, Liu KD (2019) Treatment with allogeneic mesenchymal stromal cells for moderate to severe acute respiratory distress syndrome (START study): a randomised phase 2a safety trial. Lancet Respir Med 7:154–162

    PubMed 

    Google Scholar
     

  • 123.

    Bustos ML, Huleihel L, Kapetanaki MG, Lino-Cardenas CL, Mroz L, Ellis BM, McVerry BJ, Richards TJ, Kaminski N, Cerdenes N, Mora AL, Rojas M (2014) Aging mesenchymal stem cells fail to protect because of impaired migration and antiinflammatory response. Am J Respir Crit Care Med 189:787–798

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 124.

    Hashimoto KBN, Enkhbaatar P, Angel M, Lader A, Czuczman M, Matthay MA (2021) Novel Induced-Mesenchymal Stem Cells (i-MSCs) Attenuate Severity of ARDS in Septic Sheep. Cytotherapy 23:5


    Google Scholar
     

  • 125.

    Lee JW, Matthay MA (2019) Is a part better than the whole for cell-based therapy for acute respiratory distress syndrome? Anesthesiology 130:683–685

    PubMed 

    Google Scholar
     

  • 126.

    Devaney J, Horie S, Masterson C, Elliman S, Barry F, O’Brien T, Curley GF, O’Toole D, Laffey JG (2015) Human mesenchymal stromal cells decrease the severity of acute lung injury induced by E. coli in the rat. Thorax 70:625–635

    PubMed 

    Google Scholar
     

  • 127.

    Perlee D, van Vught LA, Scicluna BP, Maag A, Lutter R, Kemper EM, van ’t Veer C, Punchard MA, Gonzalez J, Richard MP, Dalemans W, Lombardo E, de Vos AF, van der Poll T, (2018) Intravenous Infusion of Human Adipose Mesenchymal Stem Cells Modifies the Host Response to Lipopolysaccharide in Humans: A Randomized, Single-Blind, Parallel Group, Placebo Controlled Trial. Stem Cells 36:1778–1788

    CAS 
    PubMed 

    Google Scholar
     

  • 128.

    Packham DK, Fraser IR, Kerr PG, Segal KR (2016) Allogeneic Mesenchymal Precursor Cells (MPC) in Diabetic Nephropathy: A Randomized, Placebo-controlled, Dose Escalation Study. EBioMedicine 12:263–269

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 129.

    Kabat M, Bobkov I, Kumar S, Grumet M (2020) Trends in mesenchymal stem cell clinical trials 2004–2018: Is efficacy optimal in a narrow dose range? Stem Cells Transl Med 9:17–27

    CAS 
    PubMed 

    Google Scholar
     

  • 130.

    Asmussen S, Ito H, Traber DL, Lee JW, Cox RA, Hawkins HK, McAuley DF, McKenna DH, Traber LD, Zhuo H, Wilson J, Herndon DN, Prough DS, Liu KD, Matthay MA, Enkhbaatar P (2014) Human mesenchymal stem cells reduce the severity of acute lung injury in a sheep model of bacterial pneumonia. Thorax 69:819–825

    PubMed 

    Google Scholar
     

  • 131.

    Calfee CS, Delucchi K, Parsons PE, Thompson BT, Ware LB, Matthay MA, Network NA (2014) Subphenotypes in acute respiratory distress syndrome: latent class analysis of data from two randomised controlled trials. Lancet Respir Med 2:611–620

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 132.

    Calfee CS, Delucchi KL, Sinha P, Matthay MA, Hackett J, Shankar-Hari M, McDowell C, Laffey JG, O’Kane CM, McAuley DF, Trials ICC, G, (2018) Acute respiratory distress syndrome subphenotypes and differential response to simvastatin: secondary analysis of a randomised controlled trial. Lancet Respir Med 6:691–698

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 133.

    Matthay MA, Arabi YM, Siegel ER, Ware LB, Bos LDJ, Sinha P, Beitler JR, Wick KD, Curley MAQ, Constantin JM, Levitt JE, Calfee CS (2020) Phenotypes and personalized medicine in the acute respiratory distress syndrome. Intensive Care Med 46:2136–2152

    CAS 
    PubMed 

    Google Scholar
     

  • 134.

    Sinha P, Delucchi KL, McAuley DF, O’Kane CM, Matthay MA, Calfee CS (2020) Development and validation of parsimonious algorithms to classify acute respiratory distress syndrome phenotypes: a secondary analysis of randomised controlled trials. Lancet Respir Med 8:247–257

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 135.

    Warren MA, Zhao Z, Koyama T, Bastarache JA, Shaver CM, Semler MW, Rice TW, Matthay MA, Calfee CS, Ware LB (2018) Severity scoring of lung oedema on the chest radiograph is associated with clinical outcomes in ARDS. Thorax 73:840–846

    PubMed 

    Google Scholar
     

  • 136.

    Leng Z, Zhu R, Hou W, Feng Y, Yang Y, Han Q, Shan G, Meng F, Du D, Wang S, Fan J, Wang W, Deng L, Shi H, Li H, Hu Z, Zhang F, Gao J, Liu H, Li X, Zhao Y, Yin K, He X, Gao Z, Wang Y, Yang B, Jin R, Stambler I, Lim LW, Su H, Moskalev A, Cano A, Chakrabarti S, Min KJ, Ellison-Hughes G, Caruso C, Jin K, Zhao RC (2020) Transplantation of ACE2(-) Mesenchymal Stem Cells Improves the Outcome of Patients with COVID-19 Pneumonia. Aging Dis 11:216–228

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 137.

    Ulrich H, Pillat MM (2020) CD147 as a Target for COVID-19 Treatment: Suggested Effects of Azithromycin and Stem Cell Engagement. Stem Cell Rev Rep 16:434–440

    CAS 
    PubMed 

    Google Scholar
     

  • 138.

    Chen X, Gan Y, Li W, Su J, Zhang Y, Huang Y, Roberts AI, Han Y, Li J, Wang Y, Shi Y (2014) The interaction between mesenchymal stem cells and steroids during inflammation. Cell Death Dis 5:e1009

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 139.

    Dobson J, Whitley RJ, Pocock S, Monto AS (2015) Oseltamivir treatment for influenza in adults: a meta-analysis of randomised controlled trials. Lancet 385:1729–1737

    CAS 
    PubMed 

    Google Scholar
     

  • 140.

    Butler D (2014) Tamiflu report comes under fire. Nature 508:439–440

    CAS 
    PubMed 

    Google Scholar
     

  • 141.

    Michiels B, Van Puyenbroeck K, Verhoeven V, Vermeire E, Coenen S (2013) The value of neuraminidase inhibitors for the prevention and treatment of seasonal influenza: a systematic review of systematic reviews. PLoS ONE 8:e60348

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 142.

    Ebell MH, Call M, Shinholser J (2013) Effectiveness of oseltamivir in adults: a meta-analysis of published and unpublished clinical trials. Fam Pract 30:125–133

    PubMed 

    Google Scholar
     

  • 143.

    Heneghan CJ, Onakpoya I, Thompson M, Spencer EA, Jones M, Jefferson T (2014) Zanamivir for influenza in adults and children: systematic review of clinical study reports and summary of regulatory comments. BMJ 348:g2547

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 144.

    Bradley JS, Blumer JL, Romero JR, Michaels MG, Munoz FM, Kimberlin DW, Pahud B, DeBiasi RL, Yamamoto G, Roberts G, Hossain M, Shortino D, Yates PJ, Adams B, Peppercorn A (2017) Intravenous Zanamivir in Hospitalized Patients With Influenza. Pediatrics 140:8


    Google Scholar
     

  • 145.

    Marty FM, Vidal-Puigserver J, Clark C, Gupta SK, Merino E, Garot D, Chapman MJ, Jacobs F, Rodriguez-Noriega E, Husa P, Shortino D, Watson HA, Yates PJ, Peppercorn AF (2017) Intravenous zanamivir or oral oseltamivir for hospitalised patients with influenza: an international, randomised, double-blind, double-dummy, phase 3 trial. Lancet Respir Med 5:135–146

    CAS 
    PubMed 

    Google Scholar
     

  • 146.

    Kohno S, Yen MY, Cheong HJ, Hirotsu N, Ishida T, Kadota J, Mizuguchi M, Kida H, Shimada J, Group SCS (2011) Phase III randomized, double-blind study comparing single-dose intravenous peramivir with oral oseltamivir in patients with seasonal influenza virus infection. Antimicrob Agents Chemother 55:5267–5276


    Google Scholar
     

  • 147.

    Thorlund K, Awad T, Boivin G, Thabane L (2011) Systematic review of influenza resistance to the neuraminidase inhibitors. BMC Infect Dis 11:134

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 148.

    Hayden FG, Sugaya N, Hirotsu N, Lee N, de Jong MD, Hurt AC, Ishida T, Sekino H, Yamada K, Portsmouth S, Kawaguchi K, Shishido T, Arai M, Tsuchiya K, Uehara T, Watanabe A, Baloxavir Marboxil Investigators G (2018) Baloxavir Marboxil for Uncomplicated Influenza in Adults and Adolescents. N Engl J Med 379:913–923

    CAS 
    PubMed 

    Google Scholar
     

  • 149.

    Baker J, Block SL, Matharu B, Burleigh Macutkiewicz L, Wildum S, Dimonaco S, Collinson N, Clinch B, Piedra PA (2020) Baloxavir Marboxil Single-dose Treatment in Influenza-infected Children: A Randomized, Double-blind, Active Controlled Phase 3 Safety and Efficacy Trial (miniSTONE-2). Pediatr Infect Dis J 39:700–705

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 150.

    Yokoyama T, Sakaguchi H, Ishibashi T, Shishido T, Piedra PA, Sato C, Tsuchiya K, Uehara T (2020) Baloxavir Marboxil 2% Granules in Japanese Children With Influenza: An Open-label Phase 3 Study. Pediatr Infect Dis J 39:706–712

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 151.

    Ikematsu H, Hayden FG, Kawaguchi K, Kinoshita M, de Jong MD, Lee N, Takashima S, Noshi T, Tsuchiya K, Uehara T (2020) Baloxavir Marboxil for Prophylaxis against Influenza in Household Contacts. N Engl J Med 383:309–320

    CAS 
    PubMed 

    Google Scholar
     

  • 152.

    Koshimichi H, Ishibashi T, Kawaguchi N, Sato C, Kawasaki A, Wajima T (2018) Safety, Tolerability, and Pharmacokinetics of the Novel Anti-influenza Agent Baloxavir Marboxil in Healthy Adults: Phase I Study Findings. Clin Drug Investig 38:1189–1196

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 153.

    Nakano T, Yamaguchi H, Chiba T, Shiosakai K, Chikada S, Matsuoka Y (2021) The safety and efficacy of the long-acting neuraminidase inhibitor laninamivir octanoate hydrate for Inhalation Suspension Set in children under the age of 5 in a post-marketing surveillance. J Infect Chemother 27:1436–1446

    CAS 
    PubMed 

    Google Scholar
     

  • 154.

    Watanabe A, Chang SC, Kim MJ, Chu DW, Ohashi Y, Group MS (2010) Long-acting neuraminidase inhibitor laninamivir octanoate versus oseltamivir for treatment of influenza: A double-blind, randomized, noninferiority clinical trial. Clin Infect Dis 51:1167–1175


    Google Scholar
     

  • 155.

    Yamashita M, Tomozawa T, Kakuta M, Tokumitsu A, Nasu H, Kubo S (2009) CS-8958, a prodrug of the new neuraminidase inhibitor R-125489, shows long-acting anti-influenza virus activity. Antimicrob Agents Chemother 53:186–192

    CAS 
    PubMed 

    Google Scholar
     

  • 156.

    Hirotsu N, Saisho Y, Hasegawa T, Shishido T (2018) Clinical and virologic effects of four neuraminidase inhibitors in influenza A virus-infected children (aged 4–12 years): an open-label, randomized study in Japan. Expert Rev Anti Infect Ther 16:173–182

    CAS 
    PubMed 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.springeropen.com/)