• 1.

    Demain AL, Elander RP (1999) The beta-lactam antibiotics: past, present, and future. Antonie Van Leeuwenhoek 75:5–19


    Google Scholar
     

  • 2.

    Appelbaum PC (2006) The emergence of vancomycin intermediate and vancomycin-resistant Staphylococcus aureus. Clin Microbiol Infect 12(1):16–23


    Google Scholar
     

  • 3.

    Watve MG, Tickoo R, Jog MM, Bhole BD (2001) How many antibiotics are produced by the genus Streptomyces? Arch Microbiol 176:386–390


    Google Scholar
     

  • 4.

    Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70:461–477


    Google Scholar
     

  • 5.

    Berdy J (2005) Bioactive microbial metabolites. A personal view. J Antibiot 58:1–26


    Google Scholar
     

  • 6.

    Demain AL, Sanchez S (2009) Microbial drug discovery: 80 years of progress. J Antibiot (Tokyo) 62:5–16


    Google Scholar
     

  • 7.

    Bentley SD, Chater KF, Cerdeno-Tarraga AM, Challis GL, Thomson NR, James KD, Harris DE, Quail MA, Kieser H, Harper D, Bateman A, Brown S, Chandra G, Chen CW, Collins M, Cronin A, Fraser A, Goble A, Hidalgo J, Hornsby T, Howarth S, Huang CH, Kieser T, Larke L, Murphy L, Oliver K, O’Neil S, Rabbinowitsch E, Rajandream MA, Rutherford K, Rutter S, Seeger K, Saunders D, Sharp S, Squares R, Squares S, Taylor K, Warren T, Wietzorrek A, Woodward J, Barrell BG, Parkhill J, Hopwood DA (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141–147


    Google Scholar
     

  • 8.

    Ikeda H, Ishikawa J, Hanamoto A, Shinose M, Kikuchi H, Shiba T, Sakaki Y, Hattori M, Omura S (2003) Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat Biotechnol 21:526–531


    Google Scholar
     

  • 9.

    Medema MH, Trefzer A, Kovalchuk A, van den Berg M, Muller U, Heijne W, Wu L, Alam MT, Ronning CM, Nierman WC, Bovenberg RA, Breitling R, Takano E (2010) The sequence of a 1.8-mb bacterial linear plasmid reveals a rich evolutionary reservoir of secondary metabolic pathways. Genome Biol Evol 2:212–224


    Google Scholar
     

  • 10.

    Ohnishi Y, Ishikawa J, Hara H, Suzuki H, Ikenoya M et al (2008) Genome sequence of the streptomycin-producing microorganism Streptomyces griseus IFO 13350. J Bacteriol 190:4050–4060


    Google Scholar
     

  • 11.

    Song JY, Jeong H, Yu DS, Fischbach MA, Park HS, Kim JJ, Seo JS, Jensen SE, Oh TK, Lee KJ, Kim JF (2010) Draft genome sequence of Streptomyces clavuligerus NRRL 3585, a producer of diverse secondary metabolites. J Bacteriol 192:6317–6318


    Google Scholar
     

  • 12.

    Jiao J, Paterson J, Busche T, Rückert C, Kalinowski J, Harwani D, Gross H (2018) Draft genome sequence of Streptomyces sp. strain DH-12, a soilborne isolate from the Thar Desert with broad-spectrum antibacterial activity. Genome Announc 6:e00108–e00118


    Google Scholar
     

  • 13.

    Slattery M, Rajbhandari I, Wesson K (2001) Competition-mediated antibiotic induction in the marine bacterium Streptomyces tenjimariensis. Microb Ecol 41:90–96


    Google Scholar
     

  • 14.

    Oh DC, Kauffman CA, Jensen PR, Fenical W (2007) Induced production of emericellamides A and B from the marine-derived fungus Emericella sp. in competing co-culture. J Nat Prod 70:515–520


    Google Scholar
     

  • 15.

    Kurosawa K, Ghiviriga I, Sambandan TG, Lessard PA, Barbara JE et al (2008) Rhodostreptomycins antibiotics biosynthesized following horizontal gene transfer from Streptomyces padanus to Rhodococcus fascians. J Am Chem Soc 130:1126–1127


    Google Scholar
     

  • 16.

    Bills G, Overy D, Genilloud O, Pelaez F (2009) Contributions of pharmaceutical antibiotic and secondary metabolite discovery to the understanding of microbial defense and antagonism. In: White JF Jr, Torres MS (eds) Defensive Mutualism in Microbial Symbiosis. CRC Press, Boca Raton, FL, pp 257–297


    Google Scholar
     

  • 17.

    Harwani D, Begani J, Lakhani J (2018) Co-cultivation strategies to induce de-novo synthesis of novel chemical scaffolds from cryptic secondary metabolite gene clusters. In Gehlot P and Singh J eds. Fungi and their Role in Sustainable Development: Current Perspectives. Springer 617-631.

  • 18.

    Srinivasan V, Nagaraja M, Parthasarathi A (2014) Highly deviated asymmetric division in very low proportion of mycobacterial mid-log phase cells. Open Microbiol J 8:40–50


    Google Scholar
     

  • 19.

    Shirling ET, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Evol Microbiol 16(3):313–340


    Google Scholar
     

  • 20.

    Jiménez-Esquilín AE, Roane TM (2005) Antifungal activities of actinomycete strains associated with high-altitude Sagebrush Rhizosphere. J Ind Microbiol Biotechnol 32:378–381


    Google Scholar
     

  • 21.

    Elleuch L, Shaaban M, Smaoui S et al (2010) Bioactive secondary metabolites from a new terrestrial Streptomyces sp. TN262. Appl Biochem Biotechnol 162:579–593


    Google Scholar
     

  • 22.

    Magaldi S, Mata-Essayag S, Hartung de Capriles C et al (2004) Well diffusion for antifungal susceptibility testing. Int J Infect Dis 8:39–45


    Google Scholar
     

  • 23.

    Valgas C, De Souza SM, Smânia EFA et al (2007) Screening methods to determine antibacterial activity of natural products. Braz J Microbiol 38:369–380


    Google Scholar
     

  • 24.

    Johnson JS, Spakowicz DJ, Hong BY, Petersen LM, Demkowicz P, Chen L, Leopold SR, Hanson BM, Agresta HO, Gerstein M, Sodergren E (2019) Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat commun 10(1):1–1


    Google Scholar
     

  • 25.

    Li JT, Yang J, Chen DC, Zhang XL, Tang ZS (2007) An optimized mini-preparation method to obtain high-quality genomic DNA from mature leaves of sunflower. Genet Mol Res 6:1064–1071


    Google Scholar
     

  • 26.

    Wright ES, Yilmaz LS, Noguera DR (2012) DECIPHER, a Search- Based Approach to Chimera identification for 16S rRNA sequences. Appl Environ Microbiol 78:717–725


    Google Scholar
     

  • 27.

    Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller, W Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389-3402

  • 28.

    Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882


    Google Scholar
     

  • 29.

    Saitou N, Nei M (1987) The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425


    Google Scholar
     

  • 30.

    Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549


    Google Scholar
     

  • 31.

    Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120


    Google Scholar
     

  • 32.

    Felsenstein J (1985) Confidence limits on phylogeny: an appropriate use of the bootstrap. Evolution 39:783–791


    Google Scholar
     

  • 33.

    Mutka SC, Carney JR, Liu Y, Kennedy J (2006) Heterologous production of epothilone C and D in Escherichia coli. Biochemistry 45:1321–1330


    Google Scholar
     

  • 34.

    Gottelt M, Kol S, Gomez-Escribano JP, Bibb M, Takano E (2010) Deletion of a regulatory gene within the cpk gene cluster reveals novel antibacterial activity in Streptomyces coelicolor A3(2). Microbiology 156:2343–2353


    Google Scholar
     

  • 35.

    Scherlach K, Schuemann J, Dahse HM, Hertweck C (2010) Aspernidine A and B, prenylated isoindolinone alkaloids from the model fungus Aspergillus nidulans. J. Antibiot. (Tokyo). 63:375–377


    Google Scholar
     

  • 36.

    Laureti L, Song L, Huang S, Corre C, Leblond P et al (2011) Identification of a bioactive 51-membered macrolide complex by activation of a silent polyketide synthase in Streptomyces ambofaciens. Proc Natl Acad Sci USA 108:6258–6263


    Google Scholar
     

  • 37.

    Baltz RH (2011) Strain improvement in actinomycetes in the postgenomic era. J Ind Microbiol Biotechnol 38:657–666


    Google Scholar
     

  • 38.

    Garbeva P, Silby MW, Raaijmakers JM, Levy SB, Boer WD (2011) Transcriptional and antagonistic responses of Pseudomonas fluorescens Pf0-1 to phylogenetically different bacterial competitors. ISME J 5(6):973–985


    Google Scholar
     

  • 39.

    Goers L, Freemont P, Polizzi KM (2014) Co-culture systems and technologies: taking synthetic biology to the next level. J R Soc Interface 11(96):20140065


    Google Scholar
     

  • 40.

    Charusanti P, Fong NL, Nagarajan H, Pereira AR, Li HJ, Abate EA, Su Y, Gerwick WH, Palsson BO (2012) Exploiting adaptive laboratory evolution of Streptomyces clavuligerus for antibiotic discovery and overproduction. PLoS One 7:1–12


    Google Scholar
     

  • 41.

    Stergiopoulos J, Collemare J, Mehrabi R, De Wit PJ (2013) Phytotoxic secondary metabolites and peptides produced by plant pathogenic Dothideomycete fungi. FEMS Microbiol Rev 37:67–93


    Google Scholar
     

  • 42.

    Blum P, Rudrappa D, Singh R, McCarthy S, Pavlik B (2016) Experimental microbial evolution of extremophiles. In Rampelotto PH ed. Biotechnology of extremophiles: grand challenges in biology and biotechnology, Vol. 1, Cham; Heidelberg; New York, NY; London; Dordrecht: Springer International Publishing, 619–636

  • 43.

    Chunxiao Xu, Tao Sun, Shubin Li, Lei Chen, Weiwen Zhang (2018) Adaptive laboratory evolution of cadmium tolerance in Synechocystis sp. PCC 6803. Biotechnol Biofuels 11:205

  • 44.

    Cohen SP, McMurry LM, Hooper DC, Wolfson JS, Levy SB (1989) Cross-resistance to fluoroquinolones in multiple-antibioticresistant (Mar) Escherichia coli selected by tetracycline or chloramphenicol: decreased drug accumulation associated with membrane changes in addition to OmpF reduction. Antimicrob Agents Chemother 33:1318–1325


    Google Scholar
     

  • 45.

    Donald PR, van Helden PD (2009) The global burden of Tuberculosis combating drug resistance in difficult times. N Engl J Med 360:2393–2395


    Google Scholar
     

  • 46.

    Wellenreuther M, Mérot C, Berdan E, Bernatchez L (2019) Going beyond SNPs: The role of structural genomic variants in adaptive evolution and species diversification. Mol ecol 28(6):1203–1209


    Google Scholar
     

  • 47.

    Dallinger WH (1887) The president’s address. J R Microsc Soc 10:185–199


    Google Scholar
     

  • 48.

    Haas JW Jr (2000) The Reverend Dr. William Henry Dallinger, frs. (1839-1909). Notes Rec R Soc Lond 54(1):53–65

    MathSciNet 

    Google Scholar
     

  • 49.

    Bennett AF, Hughes BS (2009) Microbial experimental evolution. Am J Physiol Regul Integr Comp Physiol 297:R17–R25


    Google Scholar
     

  • 50.

    Fong SS, Joyce AR, Palsson BO (2005) Parallel adaptive evolution cultures of Escherichia coli lead to convergent growth phenotypes with different gene expression states. Genome Res 15:1365–1372


    Google Scholar
     

  • 51.

    Shui ZX, Qin H, Wu B, Ruan ZY, Wang LS, Tan FR, Wang JL, Tang XY, Dai LC, Hu GQ, He MX (2015) Adaptive laboratory evolution of ethanologenic Zymomonas mobilis strain tolerant to furfural and acetic acid inhibitors. Appl Microbiol Biotechnol 99:5739–5748


    Google Scholar
     

  • 52.

    LaCroix RA, Palsson BO, Feist AM (2017) A Model for designing adaptive laboratory evolution experiments. Appl Environ Microbiol 83:e00410–e00417


    Google Scholar
     

  • 53.

    Jahn LJ, Munck C, Ellabaan MM, Sommer MO (2017) Adaptive laboratory evolution of antibiotic resistance using different selection regimes lead to similar phenotypes and genotypes. Front Microbiol 8:816


    Google Scholar
     

  • 54.

    Riganti C, Mini E, Nobili S (2015) Editorial: multidrug resistance in cancer: pharmacological strategies from basic research to clinical issues. Front Oncol 5:105


    Google Scholar
     

  • 55.

    Conrad TM, Joyce AR, Applebee MK, Barrett CL, Xie B, Gao Y, Palsson B (2009) Whole-genome resequencing of Escherichia coli K-12 MG1655 undergoing short-term laboratory evolution in lactate minimal media reveals flexible selection of adaptive mutations. Genome Biol 10(10):R118


    Google Scholar
     

  • 56.

    Trinh CT, Srienc F (2009) Metabolic engineering of Escherichia coli for efficient conversion of glycerol to ethanol. Appl Environ Microbiol 75:6696–6705


    Google Scholar
     

  • 57.

    Hu H, Wood TK (2010) An evolved Escherichia coli strain for producing hydrogen and ethanol from glycerol. Biochem. Biophys. Res Commun 391:1033–1038


    Google Scholar
     

  • 58.

    Horinouchi T, Tamaoka K, Furusawa C, Ono N, Suzuki S, Hirasawa T, Yomo T, Shimizu H (2010) Transcriptome analysis of parallel-evolved Escherichia coli strains under ethanol stress. BMC genomics 11:579


    Google Scholar
     

  • 59.

    Stanley D, Fraser S, Chambers PJ, Rogers P, Stanley GA (2010) Generation and characterisation of stable ethanol-tolerant mutants of Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 37:139–149


    Google Scholar
     

  • 60.

    Wang Y, Manow R, Finan C, Wang J, Garza E, Zhou S (2011) Adaptive evolution of nontransgenic Escherichia coli KC01 for improved ethanol tolerance and homoethanol fermentation from xylose. J Ind Microbiol Biotechnol 38:1371–1377


    Google Scholar
     

  • 61.

    Stoebel DM, Hokamp K, Last MS, Dorman CJ (2009) Compensatory evolution of gene regulation in response to stress by Escherichia coli lacking RpoS. PLoS genetics 5:e1000671


    Google Scholar
     

  • 62.

    Zhao F, Qin YH, Zheng X, Zhao HW, Chai DY, Li W, Pu MX, Zuo XS, Qian W, Ni P, Zhang Y (2016) Biogeography and adaptive evolution of Streptomyces strains from saline environments. Scientific reports 6(1):1–9


    Google Scholar
     

  • 63.

    Wang Z, Wu J, Zhu L, Zhan X (2016) Activation of glycerol metabolism in Xanthomonas campestris by adaptive evolution to produce a high-transparency and low-viscosity xanthan gum from glycerol. Bioresour Technol 211:390–397


    Google Scholar
     

  • 64.

    Tremblay PL, Summers ZM, Glaven RH, Nevin KP, Zengler K, Barrett CL, Qiu Y, Palsson BO, Lovley DR (2011) A c-type cytochrome and a transcriptional regulator responsible for enhanced extracellular electron transfer in Geobacter sulfurreducens revealed by adaptive evolution. Environ Microbiol 13:13–23


    Google Scholar
     

  • 65.

    Shapiro BJ, Leducq JB, Mallet J (2016) What is speciation? PLoS Genet 12:e1005860


    Google Scholar
     

  • 66.

    Vos M (2011) A species concept for bacteria based on adaptive divergence. Trends Microbiol 19:1–7


    Google Scholar
     

  • 67.

    Toft C, Andersson SG (2010) Evolutionary microbial genomics: insights into bacterial host adaptation. Nat Rev Genet 11:465–475


    Google Scholar
     

  • 68.

    Li Y, Pinto-Tomás AA, Rong X, Cheng K, Liu M, Huang Y (2019) Population genomics insights into adaptive evolution and ecological differentiation in streptomycetes. Appl Environ Microbiol 85(7):e02555–e02518


    Google Scholar
     

  • 69.

    Perry MJ, Makins JF, Adlard MW, Holt G (1984) Aspergillic acids produced by mixed cultures of Aspergillus flavus and Aspergillus nidulans. J Gen Microbiol 130:319–323


    Google Scholar
     

  • 70.

    Sonnenbichler J, Lamm V, Gieren A, Holdenrieder O, Lotter H (1983) A cyclopentabenzopyranone produced by the fungus Heterobasidion annosum in dual cultures. Phytochemistry 22:1489–1491


    Google Scholar
     

  • 71.

    Gause GF (1932) Experimental studies on the struggle for existence. J Exp Biol 9:389–402


    Google Scholar
     

  • 72.

    Hardin G (1960) The competitive exclusion principle. Science 131:1292–1297


    Google Scholar
     

  • 73.

    Hu J, van Eysden J, Quiros CF (1995) Generation of DNA-based markers in specific genome regions by two-primer RAPD reactions. PCR Methods Appl 4:346–351


    Google Scholar
     

  • 74.

    Säull T, Lind-Halldén C, Halldén C (2000) Primer mixtures in RAPD analysis. Hereditas 132(3):203–208


    Google Scholar
     

  • 75.

    Williams JGK, Hanafey MK, Rafalski JA, Tingey SV (1993) Genetic analysis using randomly amplified polymorphic DNA markers. Meth Enzymology 218:704–740


    Google Scholar
     

  • 76.

    Hallden C, Hansen M, Nilsson N-0, Hjerdin A and Sall T (1996). Competition as a source of errors in RAPD analysis. Theor Appl Gen 93:1185-1192

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.springeropen.com/)