• 1.

    Zhalnina K, Louie KB, Hao Z, Mansoori N, Da Rocha UN, Shi S, Cho H, Karaoz U, Loqué D, Bowen BP et al: Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nature Microbiol 2018, 3(4):470–480.

    PubMed 
    CAS 

    Google Scholar
     

  • 2.

    Atkinson D, Watson CA: The beneficial rhizosphere: A dynamic entity. Appl Soil Ecol 2000, 15(2):99–104.


    Google Scholar
     

  • 3.

    Jacoby R, Peukert M, Succurro A, Koprivova A, Kopriva S: The role of soil microorganisms in plant mineral nutrition—current knowledge and future directions. Front Plant Sci. 2017;8:1617.

  • 4.

    Yin C, Casa Vargas JM, Schlatter DC, Hagerty CH, Hulbert SH, Paulitz TC. Rhizosphere community selection reveals bacteria associated with reduced root disease. Microbiome. 2021;9(1):86.

  • 5.

    Bulgarelli D, Garrido-Oter R, Münch PC, Weiman A, Dröge J, Pan Y, McHardy AC, Schulze-Lefert P: Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe 2015, 17(3):392–403.

    PubMed 
    CAS 

    Google Scholar
     

  • 6.

    Mahoney AK, Yin C, Hulbert SH. Community structure, species variation, and potential functions of rhizosphere-associated bacteria of different winter wheat (Triticum aestivum) cultivars. Front Plant Sci. 2017;8:132.

  • 7.

    Zhong Y, Yang Y, Liu P, Xu R, Rensing C, Fu X, Liao H: Genotype and rhizobium inoculation modulate the assembly of soybean rhizobacterial communities. Plant Cell Environment 2019, 42(6):2028–2044.

    CAS 

    Google Scholar
     

  • 8.

    Zhang Y, Wang W, Shen Z, Wang J, Chen Y, Wang D, Liu G, Han M: Comparison and interpretation of characteristics of Rhizosphere microbiomes of three blueberry varieties. BMC Microbiol 2021, 21(1).

  • 9.

    Ernst E: Panax ginseng: An overview of the clinical evidence. J Ginseng Re 2010, 34(4):259–263.


    Google Scholar
     

  • 10.

    Baeg IH, So SH: The world ginseng market and the ginseng (Korea). J Ginseng Res 2013, 37(1):1–7.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 11.

    Wu H, Yang HY, You XL, Li YH: Diversity of endophytic fungi from roots of Panax ginseng and their saponin yield capacities. SpringerPlus 2013, 2(1):1–9.


    Google Scholar
     

  • 12.

    Sun H, Wang Q, Zhang Y, Yang Z, Xu C: Integrated Evaluation of Soil Fertility of Panax ginseng under Different Cultivation Modes. J Jilin Agricultural University 2015, 37(03):323–331.

    CAS 

    Google Scholar
     

  • 13.

    Ying YX, Ding WL, Li Y: Characterization of soil bacterial communities in rhizospheric and nonrhizospheric soil of panax ginseng. Biochemical Genetics 2012, 50(11-12):848–859.

    PubMed 
    CAS 

    Google Scholar
     

  • 14.

    Chanyong L, Kim KY, Lee JE, Kim S, Ryu D, Choi JE, An G: Enzymes hydrolyzing structural components and ferrous ion cause rusty-root symptom on ginseng (Panax ginseng). J Microbiol Biotechnol 2011, 21(2):192–196.


    Google Scholar
     

  • 15.

    Wang Q, Sun H, Xu C, Ma L, Li M, Shao C, Guan Y, Liu N, Liu Z, Zhang S et al: Analysis of rhizosphere bacterial and fungal communities associated with rusty root disease of Panax ginseng. Applied Soil Ecology 2019, 138:245–252.


    Google Scholar
     

  • 16.

    Miao ZQ, Li SD, Liu X, Chen YJ, Li YH, Wang Y, Guo RJ, Xia ZY, Zhang KQ: The causal microorganisms of Panax notoginseng root rot disease. Scientia Agricultura Sinica 2006, 39:1371–1378.


    Google Scholar
     

  • 17.

    Ma L, Cao YH, Cheng MH, Huang Y, Mo MH, Wang Y, Yang JZ, Yang FX: Phylogenetic diversity of bacterial endophytes of Panax notoginseng with antagonistic characteristics towards pathogens of root-rot disease complex. Antonie van Leeuwenhoek, Int J General Molecular Microbiol 2013, 103(2):299–312.


    Google Scholar
     

  • 18.

    Wu Z, Hao Z, Sun Y, Guo L, Huang L, Zeng Y, Wang Y, Yang L, Chen B: Comparison on the structure and function of the rhizosphere microbial community between healthy and root-rot Panax notoginseng. Applied Soil Ecology 2016, 107:99–107.


    Google Scholar
     

  • 19.

    Jiang J, Yu M, Hou R, Li L, Ren X, Jiao C, Yang L, Xu H: Changes in the soil microbial community are associated with the occurrence of Panax quinquefolius L. root rot diseases. Plant and Soil 2019, 438(1-2):143–156.

    CAS 

    Google Scholar
     

  • 20.

    Xiao C, Yang L, Zhang L, Liu C, Han M: Effects of cultivation ages and modes on microbial diversity in the rhizosphere soil of panax ginseng. J Ginseng Res 2016, 40(1):28–37.

    PubMed 

    Google Scholar
     

  • 21.

    Dong L, Xu J, Li Y, Fang H, Niu W, Li X, Zhang Y, Ding W, Chen S: Manipulation of microbial community in the rhizosphere alleviates the replanting issues in Panax ginseng. Soil Biol Biochem 2018, 125:64–74.

    CAS 

    Google Scholar
     

  • 22.

    Dong L, Xu J, Zhang L, Cheng R, Wei G, Su H, Yang J, Qian J, Xu R, Chen S: Rhizospheric microbial communities are driven by Panax ginseng at different growth stages and biocontrol bacteria alleviates replanting mortality. Acta Pharmaceutica Sinica B 2018, 8(2):272–282.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 23.

    Xu H, P.: A brief discussion on the classification and identification of wild Ginseng. Chinese Rural Medicine 2021, 28(01):13–14.


    Google Scholar
     

  • 24.

    Hacquard S, Spaepen S, Garrido-Oter R, Schulze-Lefert P: Interplay between Innate Immunity and the Plant Microbiota. In: Annual Review Phytopathology. 55; 2017: 565–589.

    PubMed 
    CAS 

    Google Scholar
     

  • 25.

    Schlatter D, Kinkel L, Thomashow L, Weller D, Paulitz T: Disease suppressive soils: New insights from the soil microbiome. Phytopathology 2017, 107(11):1284–1297.

    PubMed 

    Google Scholar
     

  • 26.

    Wang X, Wang Z, Jiang P, He Y, Mu Y, Lv X, Zhuang L: Bacterial diversity and community structure in the rhizosphere of four Ferula species. Scientific Reports 2018, 8(1).

  • 27.

    Stark C, Condron LM, Stewart A, Di HJ, O’Callaghan M: Effects of past and current crop management on soil microbial biomass and activity. Biology and Fertility of Soils 2007, 43(5):531–540.


    Google Scholar
     

  • 28.

    Azeem M, Sun D, Crowley D, Hayat R, Hussain Q, Ali A, Tahir MI, Jeyasundar PGSA, Rinklebe J, Zhang Z. Crop types have stronger effects on soil microbial communities and functionalities than biochar or fertilizer during two cycles of legume-cereal rotations of dry land. Sci Total Environ. 2020;715:136958.

  • 29.

    Coleman-Derr D, Desgarennes D, Fonseca-Garcia C, Gross S, Clingenpeel S, Woyke T, North G, Visel A, Partida-Martinez LP, Tringe SG: Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species. New Phytologist 2016, 209(2):798–811.

    CAS 

    Google Scholar
     

  • 30.

    Wang H, Fang X, Wu H, Cai X, Xiao H: Effects of plant cultivars on the structure of bacterial and fungal communities associated with ginseng. Plant Soil 2021, 465(1-2):143–156.

    CAS 

    Google Scholar
     

  • 31.

    Li L, Y., Qu W, S., Dai Q, K., Ma H, Y., Fang T, F.: Comparative research progress of chemical constituents of Panax ginseng in different habitats. J Guangdong Pharmaceutical University 2018, 34(06):803–807.

    CAS 

    Google Scholar
     

  • 32.

    Huang X, R.: Study on cultivation management and pest control of ginseng in field. Agricult Technol 2019, 39(02):119–120.


    Google Scholar
     

  • 33.

    Nuccio EE, Anderson-Furgeson J, Estera KY, Pett-Ridge J, De Valpine P, Brodie EL, Firestone MK: Climate and edaphic controllers influence rhizosphere community assembly for a wild annual grass. Ecology 2016, 97(5):1307–1318.

    PubMed 

    Google Scholar
     

  • 34.

    Rahman M, Punja ZK: Influence of iron on cylindrocarpon root rot development on ginseng. Phytopathology 2006, 96(11):1179–1187.

    PubMed 
    CAS 

    Google Scholar
     

  • 35.

    Chen S, Li X, Lavoie M, Jin Y, Xu J, Fu Z, Qian H: Diclofop-methyl affects microbial rhizosphere community and induces systemic acquired resistance in rice. J Environ Sci (China) 2017, 51:352–360.

    CAS 

    Google Scholar
     

  • 36.

    Arango L, Buddrus-Schiemann K, Opelt K, Lueders T, Haesler F, Schmid M, Ernst D, Hartmann A: Effects of glyphosate on the bacterial community associated with roots of transgenic Roundup Ready® soybean.Eur j Soil Biol 2014, 63:41–48.

    CAS 

    Google Scholar
     

  • 37.

    Zachow C, Müller H, Tilcher R, Berg G. Differences between the rhizosphere microbiome of Beta vulgaris ssp. maritima-ancestor of all beet crops-and modern sugar beets. Front Microbiol. 2014;5:415.

  • 38.

    Pérez-Jaramillo JE, Mendes R, Raaijmakers JM: Impact of plant domestication on rhizosphere microbiome assembly and functions. Plant Molecular Biol 2016, 90(6):635–644.

    PubMed 

    Google Scholar
     

  • 39.

    Shi S, Chang J, Tian L, Nasir F, Ji L, Li X, Tian C: Comparative analysis of the rhizomicrobiome of the wild versus cultivated crop: insights from rice and soybean. Arch Microbiol 2019, 201(7):879–888.

    PubMed 
    CAS 

    Google Scholar
     

  • 40.

    Wissuwa M, Mazzola M, Picard C: Novel approaches in plant breeding for rhizosphere-related traits. Plant Soil 2009, 321(1-2):409–430.

    CAS 

    Google Scholar
     

  • 41.

    Zhang A, H., Shi K, Xu Y, H., Sun J, M., Lei F, J.: Chemotaxis response of rhizosphere solani and sclerotinia schinseng to total ginsenosideds. J Northwest A&F University 2016, 44(05):200-204+214.


    Google Scholar
     

  • 42.

    Zhan Y, Wang E, Wang H, Chen X, Meng X, Li Q, Chen C: Allelopathic effects of ginsenoside on soil sickness, soil enzymes, soil disease index and plant growth of Ginseng. Allelopathy J 2021, 52:251–260.


    Google Scholar
     

  • 43.

    Choi YE, Kim YS, Yi MJ, Park WG, Yi JS, Chun SR, Han SS, Lee SJ: Physiological and chemical characteristics of field-and mountain-cultivated ginseng roots. J Plant Biol 2007, 50(2):198–205.

    CAS 

    Google Scholar
     

  • 44.

    Ying YX, Ding WL, Li Y: Characterization of soil bacterial communities in rhizospheric and nonrhizospheric soil of panax ginseng. Biochem Genet 2012, 50(11-12):848–859.

    PubMed 
    CAS 

    Google Scholar
     

  • 45.

    Szoboszlay M, Lambers J, Chappell J, Kupper JV, Moe LA, McNear DH: Comparison of root system architecture and rhizosphere microbial communities of Balsas teosinte and domesticated corn cultivars. Soil Biol Biochem 2015, 80:34–44.

    CAS 

    Google Scholar
     

  • 46.

    Voriskova J, Baldrian P: Fungal community on decomposing leaf litter undergoes rapid successional changes. ISME J 2013, 7(3):477–486.

    CAS 

    Google Scholar
     

  • 47.

    Wei X, Wang X, Cao P, Gao Z, Chen AJ, Han J. Microbial Community Changes in the Rhizosphere Soil of Healthy and Rusty Panax ginseng and Discovery of Pivotal Fungal Genera Associated with Rusty Roots. BioMed Research Int. 2020;2020(1):1-13.

  • 48.

    Glinushkin AP, Ovsyankina AV, Kornyukov DA: Diagnosis of fungi of the genus Fusarium and Alternaria, Bipolaris, causing diseases of sunflower, and immunological methods for the evaluation and selection of genotypes to the pathogens. IOP Conference Series: Earth and Environmental Science 2021, 663(1):012049.

  • 49.

    Okello PN, Petrovic K, Singh AK, Kontz B, Mathew FM: Characterization of species of Fusarium causing root rot of Soybean (Glycine max L.) in South Dakota, USA. Can J Plant Pathol 2020, 42(4):560–571.


    Google Scholar
     

  • 50.

    Punja ZK, Wan A, Goswami RS, Verma N, Rahman M, Barasubiye T, Seifert KA, Lévesque CA: Diversity of Fusarium species associated with discolored ginseng roots in British Columbia. Can J Plant Pathol 2007, 29(4):340–353.

    CAS 

    Google Scholar
     

  • 51.

    Wei X, Wang X, Cao P, Gao Z, Chen AJ, Han J. Microbial Community Changes in the Rhizosphere Soil of Healthy and Rusty Panax ginseng and Discovery of Pivotal Fungal Genera Associated with Rusty Roots. BioMed Res Int. 2020;2020:8018525.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 52.

    Huang W, Sun D, Fu J, Zhao H, Wang R, An Y. Effects of continuous sugar beet cropping on rhizospheric microbial communities. Genes. 2020;11(1):13.

  • 53.

    Center. NESSD: Soil SubCenter, National Science & Technology Infrastructure of China. (http://soilgeodatacn) 2020.

  • 54.

    Ullah A, Akbar A, Luo Q, Khan AH, Manghwar H, Shaban M, Yang X. Microbiome Diversity in Cotton Rhizosphere Under Normal and Drought Conditions. Microbial Ecol. 2019;77(2):429–39.

    CAS 

    Google Scholar
     

  • 55.

    Haichar FEZ, Marol C, Berge O, Rangel-Castro JI, Prosser JI, Balesdent J, Heulin T, Achouak W. Plant host habitat and root exudates shape soil bacterial community structure. ISME J. 2008;2(12):1221–30.

    PubMed 
    CAS 

    Google Scholar
     

  • 56.

    Magoč T, Salzberg SL. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics. 2011;27(21):2957–63.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 57.

    Edgar RC. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10(10):996–8.

    PubMed 
    CAS 

    Google Scholar
     

  • 58.

    Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 2011;27(16):2194–200.

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 59.

    Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75(23):7537–41.

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 60.

    Dixon P. VEGAN, a package of R functions for community ecology. J Vegetation Sci. 2003;14(6):927–30.


    Google Scholar
     

  • 61.

    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pẽa AG, Goodrich JK, Gordon JI, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7(5):335–6.

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)