• 1.

    Bruijning M, Metcalf CJE, Jongejans E, Ayroles JF. The evolution of variance control. Trends Ecol Evol. 2020;35:22–33.

    PubMed 

    Google Scholar
     

  • 2.

    Shen X, Pettersson M, Rönnegård L, Carlborg Ö. Inheritance beyond plain heritability: variance-controlling genes in Arabidopsis thaliana. PLoS Genet. 2012;8:e1002839.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 3.

    Queitsch C, Sangster TA, Lindquist S. Hsp90 as a capacitor of phenotypic variation. Nature. 2002;417:618–24.

    CAS 
    PubMed 

    Google Scholar
     

  • 4.

    Rutherford S, Hirate Y, Swalla BJ. The Hsp90 capacitor, developmental remodeling, and evolution: the robustness of gene networks and the curious evolvability of metamorphosis. Crit Rev Biochem Mol. 2007;42:355–72.

    CAS 

    Google Scholar
     

  • 5.

    Sangster TA, Bahrami A, Wilczek A, Watanabe E, Schellenberg K, McLellan C, et al. Phenotypic diversity and altered environmental plasticity in Arabidopsis thaliana with reduced Hsp90 levels. PLoS One. 2007;2:e648.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 6.

    Hill WG, Mulder HA. Genetic analysis of environmental variation. Genet Res (Camb). 2010;92:381–95.


    Google Scholar
     

  • 7.

    Ibáñez-Escriche N, Varona L, Sorensen D, Noguera JL. A study of heterogeneity of environmental variance for slaughter weight in pigs. Animal. 2008;2:19–26.

    PubMed 

    Google Scholar
     

  • 8.

    Ros M, Sorensen D, Waagepetersen R, Dupont-Nivet M, SanCristobal M, Bonnet JC, et al. Evidence for genetic control of adult weight plasticity in the snail Helix aspersa. Genetics. 2004;168:2089–97.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 9.

    Sonesson AK, Ødegård J, Rönnegård L. Genetic heterogeneity of within-family variance of body weight in Atlantic salmon (Salmo salar). Genet Sel Evol. 2013;45:41.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 10.

    Sae-Lim P, Khaw HL, Nielsen HM, Puvanendran V, Hansen Ø, Mortensen A. Genetic variance for uniformity of body weight in lumpfish (Cyclopterus lumpus) used a double hierarchical generalized linear model. Aquaculture. 2020;514:734515.

    CAS 

    Google Scholar
     

  • 11.

    Mulder HA, Gienapp P, Visser ME. Genetic variation in variability: Phenotypic variability of fledging weight and its evolution in a songbird population. Evolution. 2016;70:2004–16.

    PubMed 

    Google Scholar
     

  • 12.

    Yousefi Zonuz A, Alijani S, Rafat SA. Genetic heterogeneity of residual variance of hatch weight in Mazandaran native chicken. Br Poult Sci. 2019;60:366–72.

    CAS 
    PubMed 

    Google Scholar
     

  • 13.

    Sell-Kubiak E, Wang S, Knol EF, Mulder HA. Genetic analysis of within-litter variation in piglets’ birth weight using genomic or pedigree relationship matrices. J Anim Sci. 2015;93:1471–80.

    CAS 
    PubMed 

    Google Scholar
     

  • 14.

    Sell-Kubiak E, Bijma P, Knol EF, Mulder HA. Comparison of methods to study uniformity of traits: application to birth weight in pigs. J Anim Sci. 2015;93:900–11.

    CAS 
    PubMed 

    Google Scholar
     

  • 15.

    Berghof TVL, Bovenhuis H, Mulder HA. Body weight deviations as indicator for resilience in layer chickens. Front Genet. 2019;10:1216.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Yang J, Loos RJF, Powell JE, Medland SE, Speliotes EK, Chasman DI, et al. FTO genotype is associated with phenotypic variability of body mass index. Nature. 2012;490:267–72.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 17.

    Tropf FC, Lee SH, Verweij RM, Stulp G, van der Most PJ, De Vlaming R, et al. Hidden heritability due to heterogeneity across seven populations. Nat Hum Behav. 2017;1:757–65.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 18.

    Rönnegård L, Felleki M, Fikse F, Mulder HA, Strandberg E. Genetic heterogeneity of residual variance-estimation of variance components using double hierarchical generalized linear models. Genet Sel Evol. 2010;42:8.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 19.

    Iung LHS, Neves HHR, Mulder HA, Carvalheiro R. Genetic control of residual variance of yearling weight in Nellore beef cattle. J Anim Sci. 2017;95:1425–33.

    CAS 
    PubMed 

    Google Scholar
     

  • 20.

    Rönnegård L, Valdar W. Detecting major genetic loci controlling phenotypic variability in experimental crosses. Genetics. 2011;188:435–47.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 21.

    Rönnegård L, Valdar W. Recent developments in statistical methods for detecting genetic loci affecting phenotypic variability. BMC Genet. 2012;13:63.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 22.

    Nelson RM, Pettersson ME, Li X, Carlborg Ö. Variance heterogeneity in Saccharomyces cerevisiae expression data: trans-regulation and epistasis. PLoS One. 2013;8:e79507.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 23.

    Geiler-Samerotte K, Bauer C, Li S, Ziv N, Gresham D, Siegal M. The details in the distributions: why and how to study phenotypic variability. Curr Opin Biotechnol. 2013;24:752–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    SEGES. Annual Report—Results. Copenhagen. 2020. https://pigresearchcentre.dk/About-us/Annual-reports. Accessed 30 Jun 2021.

  • 25.

    Sell-Kubiak E, Duijvesteijn N, Lopes MS, Janss LLG, Knol EF, Bijma P, et al. Genome-wide association study reveals novel loci for litter size and its variability in a Large White pig population. BMC Genomics. 2015;16:1049.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 26.

    Animal Genome Project. Pig QTL data base. http://www.animalgenome.org/QTLdb/pig.html. Accessed 30 Jun 2021.

  • 27.

    Stelzer G, Rosen R, Plaschkes I, Zimmerman S, Twik M, Fishilevich S, et al. The GeneCards Suite: from gene data mining to disease genome sequence analysis. Curr Protoc Bioinformatics. 2016. https://doi.org/10.1002/cpbi.5.

    Article 
    PubMed 

    Google Scholar
     

  • 28.

    Dobrzański J, Mulder HA, Knol EF, Szwaczkowski T, Sell-Kubiak E. Estimation of litter size variability phenotypes in Large White sows. J Anim Breed Genet. 2020;137:559–70.

    PubMed 

    Google Scholar
     

  • 29.

    Gilmour AR, Gogel BJ, Cullis BR, Thompson R. ASReml user guide release 3.0. Hemel Hempstead: VSN Int Ltd. 2009. https://www.vsni.co.uk/. Accessed 30 June 2021.

  • 30.

    SanCristobal-Gaudy M, Elsen J-M, Bodin L, Chevalet C. Prediction of the response to a selection for canalisation of a continuous trait in animal breeding. Genet Sel Evol. 1998;30:423–51.

    PubMed Central 

    Google Scholar
     

  • 31.

    SanCristobal-Gaudy M, Bodin L, Elsen JM, Chevalet C. Genetic components of litter size variability in sheep. Genet Sel Evol. 2001;33:249–71.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 32.

    Sorensen D, Waagepetersen R. Normal linear models with genetically structured residual variance heterogeneity: A case study. Genet Res. 2003;82:207–22.

    PubMed 

    Google Scholar
     

  • 33.

    Felleki M, Lee D, Lee Y, Gilmour AR, Rönnegård L. Estimation of breeding values for mean and dispersion, their variance and correlation using double hierarchical generalized linear models. Genet Res. 2012;94:307–17.

    CAS 

    Google Scholar
     

  • 34.

    Garrick DJ, Taylor JF, Fernando RL. Deregressing estimated breeding values and weighting information for genomic regression analyses. Genet Sel Evol. 2009;41:55.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 35.

    Sargolzaei M, Chesnais JP, Schenkel FS. A new approach for efficient genotype imputation using information from relatives. BMC Genomics. 2014;15:478.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 36.

    Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: A tool for genome-wide complex trait analysis. Am J Hum Genet. 2011;88:76–82.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 37.

    Yang J, Zaitlen NA, Goddard ME, Visscher PM, Price AL. Advantages and pitfalls in the application of mixed-model association methods. Nat Genet. 2014;46:100–6.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 38.

    Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559–75.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 39.

    Ensembl. Sscrofa 11.1. http://www.ensembl.org. Accessed 30 Jun 2021.

  • 40.

    Sell-Kubiak E, Knol EF, Mulder HA. Selecting for changes in average “parity curve” pattern of litter size in Large White pigs. J Anim Breed Genet. 2019;136:134–48.

    PubMed 

    Google Scholar
     

  • 41.

    Berghof TVL, Poppe M, Mulder HA. Opportunities to improve resilience in animal breeding programs. Front Genet. 2019;9:692.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 42.

    Kim HY, Spector AA. N-Docosahexaenoylethanolamine: A neurotrophic and neuroprotective metabolite of docosahexaenoic acid. Mol Aspects Med. 2018;64:34–44.

    CAS 
    PubMed 

    Google Scholar
     

  • 43.

    Lee JW, Huang BX, Kwon HS, Rashid MA, Kharebava G, Desai A, et al. Orphan GPR110 (ADGRF1) targeted by N-docosahexaenoylethanolamine in development of neurons and cognitive function. Nat Commun. 2016;7:13123.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 44.

    Kubo F, Ariestanti DM, Oki S, Fukuzawa T, Demizu R, Sato T, et al. Loss of the adhesion G-protein coupled receptor ADGRF5 in mice induces airway inflammation and the expression of CCL2 in lung endothelial cells. Respir Res. 2019;20:11.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 45.

    Niaudet C, Petkova M, Jung B, Lu S, Laviña B, Offermanns S, et al. Adgrf5 contributes to patterning of the endothelial deep layer in retina. Angiogenesis. 2019;22:491–505.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 46.

    Lu S, Liu S, Wietelmann A, Kojonazarov B, Atzberger A, Tang C, et al. Developmental vascular remodeling defects and postnatal kidney failure in mice lacking Gpr116 (Adgrf5) and Eltd1 (Adgrl4). PLoS One. 2017;12:e0183166.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 47.

    Assoum M, Philippe C, Isidor B, Perrin L, Makrythanasis P, Sondheimer N, et al. Autosomal-recessive mutations in AP3B2, adaptor-related protein complex 3 beta 2 subunit, cause an early-onset epileptic encephalopathy with optic atrophy. Am J Hum Genet. 2016;99:1368–76.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 48.

    Hirschhorn R, Huie ML, Kasper JS. Computer assisted cloning of human neutral α-glucosidase C (GANC): a new paralog in the glycosyl hydrolase gene family 31. Proc Natl Acad Sci USA. 2002;99:13642–6.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 49.

    Dewey S, Lai X, Witzmann FA, Sohal M, Gomes AV. Proteomic analysis of hearts from Akita mice suggests that increases in soluble epoxide hydrolase and antioxidative programming are key changes in early stages of diabetic cardiomyopathy. J Proteome Res. 2013;12:3920–33.

    CAS 
    PubMed 

    Google Scholar
     

  • 50.

    Huang H, Cao J, Guo G, Li X, Wang Y, Yu Y, et al. Genome-wide association study identifies QTLs for displacement of abomasum in Chinese Holstein cattle. J Anim Sci. 2019;97:1133–42.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 51.

    Hatakeyama E, Hayashi K. KATNAL1 is a more active and stable isoform of katanin, and is expressed dominantly in neurons. Biochem Biophys Res Commun. 2018;507:389–94.

    CAS 
    PubMed 

    Google Scholar
     

  • 52.

    Smith LB, Milne L, Nelson N, Eddie S, Brown P, Atanassova N, et al. KATNAL1 regulation of sertoli cell microtubule dynamics is essential for spermiogenesis and male fertility. PLoS Genet. 2012;8:e1002697.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 53.

    Mackay TFC, Lyman RF. Drosophila bristles and the nature of quantitative genetic variation. Philos T R Soc Lond B Biol Sci. 2005;360:1513–27.

    CAS 

    Google Scholar
     

  • 54.

    Ordas B, Malvar RA, Hill WG. Genetic variation and quantitative trait loci associated with developmental stability and the environmental correlation between traits in maize. Genet Res (Camb). 2008;90:385–95.

    CAS 

    Google Scholar
     

  • 55.

    Paré G, Cook NR, Ridker PM, Chasman DI. On the use of variance per genotype as a tool to identify quantitative trait interaction effects: a report from the Women’s Genome Health Study. PLoS Genet. 2010;6:e1000981.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 56.

    Ayroles JF, Buchanan SM, O’Leary C, Skutt-Kakaria K, Grenier JK, Clark AG, et al. Behavioral idiosyncrasy reveals genetic control of phenotypic variability. Proc Natl Acad Sci USA. 2015;112:6706–11.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 57.

    Perry GML, Nehrke KW, Bushinsky DA, Reid R, Lewandowski KL, Hueber P, et al. Sex modifies genetic effects on residual variance in urinary calcium excretion in rat (Rattus norvegicus). Genetics. 2012;191:1003–13.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 58.

    Wolc A, Arango J, Settar P, Fulton JE, O’Sullivan NP, Preisinger R, et al. Genome-wide association analysis and genetic architecture of egg weight and egg uniformity in layer chickens. Anim Genet. 2012;43:87–96.

    PubMed 

    Google Scholar
     

  • 59.

    Jimenez-Gomez JM, Corwin JA, Joseph B, Maloof JN, Kliebenstein DJ. Genomic analysis of QTLs and genes altering natural variation in stochastic noise. PLoS Genet. 2011;7:e1002295.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 60.

    Mulder HA, Crump R, Calus MPL, Veerkamp R. Unraveling the genetic architecture of environmental variance of somatic cell score using high-density single nucleotide polymorphism and cow data from experimental farms. J Dairy Sci. 2013;96:7306–17.

    CAS 
    PubMed 

    Google Scholar
     

  • 61.

    Ek WE, Rask-Andersen M, Karlsson T, Enroth S, Gyllensten U, Johansson Å. Genetic variants influencing phenotypic variance heterogeneity. Hum Mol Genet. 2018;27:799–810.

    CAS 
    PubMed 

    Google Scholar
     

  • 62.

    Wang X, Liu X, Deng D, Yu M, Li X. Genetic determinants of pig birth weight variability. BMC Genet. 2016;17:41.

    CAS 

    Google Scholar
     

  • 63.

    Wang Y, Ding X, Tan Z, Ning C, Xing K, Yang T, et al. Genome-wide association study of piglet uniformity and farrowing interval. Front Genet. 2017;8:194.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 64.

    Iung LHS, Mulder HA, Neves HHR, Carvalheiro R. Genomic regions underlying uniformity of yearling weight in Nellore cattle evaluated under different response variables. BMC Genomics. 2018;19:619.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 65.

    Hussain W, Campbell M, Jarquin D, Walia H, Morota G. Variance heterogeneity genome-wide mapping for cadmium in bread wheat reveals novel genomic loci and epistatic interactions. Plant Genome. 2020;13:e20011.

    CAS 
    PubMed 

    Google Scholar
     

  • 66.

    Wang X, Liu X, Deng D, Yu M, Li X. Genetic determinants of pig birth weight variability. BMC Genet. 2016;17:15.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 67.

    Onteru SK, Fan B, Du ZQ, Garrick DJ, Stalder KJ, Rothschild MF. A whole-genome association study for pig reproductive traits. Anim Genet. 2011;43:18–26.

    PubMed 

    Google Scholar
     

  • 68.

    Tart JK, Johnson RK, Bundy JW, Ferdinand NN, McKnite AM, Wood JR, et al. Genome-wide prediction of age at puberty and reproductive longevity in sows. Anim Genet. 2013;44:387–97.

    CAS 
    PubMed 

    Google Scholar
     

  • 69.

    Coster A, Madsen O, Heuven HCM, Dibbits B, Groenen MAM, van Arendonk JAM, et al. The imprinted gene DIO3 is a candidate gene for litter size in pigs. PLoS One. 2012;7:e31825.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 70.

    Jiao S, Maltecca C, Gray KA, Cassady JP. Feed intake, average daily gain, feed efficiency, and real-time ultrasound traits in Duroc pigs: II. genomewide association. J Anim Sci. 2014;92:2846–60.

    CAS 
    PubMed 

    Google Scholar
     

  • 71.

    Duijvesteijn N, Veltmaat JM, Knol EF, Harlizius B. High-resolution association mapping of number of teats in pigs reveals regions controlling vertebral development. BMC Genomics. 2014;15:542.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 72.

    Zhuang Z, Ding R, Peng L, Wu J, Ye Y, Zhou S, et al. Genome-wide association analyses identify known and novel loci for teat number in Duroc pigs using single-locus and multi-locus models. BMC Genomics. 2020;21:344.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 73.

    Rosendo A, Iannuccelli N, Gilbert H, Riquet J, Billon Y, Amigues Y, et al. Microsatellite mapping of quantitative trait loci affecting female reproductive tract characteristics in Meishan × Large White F2 pigs. J Anim Sci. 2012;90:37–44.

    CAS 
    PubMed 

    Google Scholar
     

  • 74.

    Petrovski S, Wang QL. Permutation based QQ plot and inflation factor estimation. Version 1.0.1. 2016. https://github.com/cran/QQperm/blob/master/DESCRIPTION/. Accessed 15 Dec 2021.

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)