• 1.

    Liang B, Ding H, Huang L, Luo H, Zhu X. GWAS in cancer: progress and challenges. Mol Gen Genomics. 2020;295(3):537–61. https://doi.org/10.1007/s00438-020-01647-z.

    CAS 
    Article 

    Google Scholar
     

  • 2.

    Tavares V, Pinto R, Assis J, Pereira D, Medeiros R. Venous thromboembolism GWAS reported genetic makeup and the hallmarks of cancer: Linkage to ovarian tumour behaviour. Biochim Biophys Acta Re Cancer. 2020;1873(1):188331. https://doi.org/10.1016/j.bbcan.2019.188331.

    CAS 
    Article 

    Google Scholar
     

  • 3.

    Bergamaschi M, Maltecca C, Fix J, Schwab C, Tiezzi F. Genome-wide association study for carcass quality traits and growth in purebred and crossbred pigs1. J Anim Sci. 2020;98(1):skz360.

    Article 

    Google Scholar
     

  • 4.

    He S, Zhang Z, Sun Y, Ren T, Li W, Zhou X, et al. Genome-wide association study shows that microtia in Altay sheep is caused by a 76 bp duplication of HMX1. Anim Genet. 2020;51(1):132–6.

    CAS 
    Article 

    Google Scholar
     

  • 5.

    Zaalberg RM, Janss L, Buitenhuis AJ. Genome-wide association study on Fourier transform infrared milk spectra for two Danish dairy cattle breeds. BMC Genet. 2020;21(1):9. https://doi.org/10.1186/s12863-020-0810-4.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 6.

    Xie L, Luo C, Zhang C, Zhang R, Tang J, Nie Q, et al. Genome-wide association study identified a narrow chromosome 1 region associated with chicken growth traits. PLoS One. 2012;7(2):e30910. https://doi.org/10.1371/journal.pone.0030910.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 7.

    Zhang GX, Fan QC, Wang JY, Zhang T, Xue Q, Shi HQ. Genome-wide association study on reproductive traits in Jinghai Yellow Chicken. Anim Reprod Sci. 2015;163:30–4. https://doi.org/10.1016/j.anireprosci.2015.09.011.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 8.

    Moreira G, Boschiero C, Cesar A, Reecy JM, Godoy TF, Pértille F, et al. Integration of genome wide association studies and whole genome sequencing provides novel insights into fat deposition in chicken. Sci Rep. 2018;8(1):16222. https://doi.org/10.1038/s41598-018-34364-0.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 9.

    Liu Z, Yang N, Yan Y, Li G, Liu A, Wu G, et al. Genome-wide association analysis of egg production performance in chickens across the whole laying period. BMC Genet. 2019;20(1):67. https://doi.org/10.1186/s12863-019-0771-7.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 10.

    Guo L, Sun B, Shang Z, Leng L, Wang Y, Wang N, et al. Comparison of adipose tissue cellularity in chicken lines divergently selected for fatness. Poult Sci. 2011;90(9):2024–34.

    CAS 
    Article 

    Google Scholar
     

  • 11.

    Zhang H, Na W, Zhang HL, Wang N, Du ZQ, Wang SZ, et al. TCF21 is related to testis growth and development in broiler chickens. Genet Sel Evol. 2017;49(1):25. https://doi.org/10.1186/s12711-017-0299-0.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 12.

    Zhang H, Shen L, Li Y, Xu Z, Zhang X, Yu J, et al. Genome-wide association study for plasma very low-density lipoprotein concentration in chicken. J Anim Breed Genet. 2019;136(5):351–61. https://doi.org/10.1111/jbg.12397.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 13.

    Venturini GC, Stafuzza NB, Cardoso DF, Baldi F, Ledur MC, Peixoto JO, et al. Association between ACTA1 candidate gene and performance, organs and carcass traits in broilers. Poult Sci. 2016;95(5):1221. https://doi.org/10.3382/ps/pew134.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 14.

    Kapell DN, Hill WG, Neeteson AM, McAdam J, Koerhuis AN, Avendaño S. Genetic parameters of foot-pad dermatitis and body weight in purebred broiler lines in 2 contrasting environments. Poult Sci. 2012;91(3):565–74.

    CAS 
    Article 

    Google Scholar
     

  • 15.

    Kapell DN, Hill WG, Neeteson AM, McAdam J, Koerhuis AN, Avendaño S. Twenty-five years of selection for improved leg health in purebred broiler lines and underlying genetic parameters. Poult Sci. 2012;91(12):3032–43. https://doi.org/10.3382/ps.2012-02578.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 16.

    Mebratie W, Madsen P, Hawken R, Romé H, Marois D, Henshall J, et al. Genetic parameters for body weight and different definitions of residual feed intake in broiler chickens. Genet Sel Evol. 2019;51(1):53. https://doi.org/10.1186/s12711-019-0494-2.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 17.

    Chu TT, Madsen P, Norberg E, Wang L, Marois D, Henshall J, et al. Genetic analysis on body weight at different ages in broiler chicken raised in commercial environment. J Anim Breed Genet. 2020;137(2):245–59. https://doi.org/10.1111/jbg.12448.

    Article 
    PubMed 

    Google Scholar
     

  • 18.

    Momen M, Mehrgardi AA, Sheikhy A, Esmailizadeh A, Fozi MA, Kranis A, et al. A predictive assessment of genetic correlations between traits in chickens using markers. Genet Sel Evol. 2017;49(1):16. https://doi.org/10.1186/s12711-017-0290-9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 19.

    Wang SB, Feng JY, Ren WL, Huang B, Zhou L, Wen YJ, et al. Improving power and accuracy of genome-wide association studies via a multi-locus mixed linear model methodology. Sci Rep. 2016;6:19444. https://doi.org/10.1038/srep19444.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Wen YJ, Zhang H, Ni YL, Huang B, Zhang J, Feng JY, et al. Methodological implementation of mixed linear models in multi-locus genome-wide association studies. Brief Bioinform. 2018;19(4):700–12. https://doi.org/10.1093/bib/bbw145.

    Article 

    Google Scholar
     

  • 21.

    Zhang YW, Tamba CL, Wen YJ, Li P, Ren WL, Ni YL, et al. mrMLM v4.0.2: An R Platform for Multi-locus Genome-wide Association Studies. Genomics Proteomics Bioinform. 2020;18(4):481–7. https://doi.org/10.1016/j.gpb.2020.06.006.

    Article 

    Google Scholar
     

  • 22.

    Mebratie W, Reyer H, Wimmers K, Bovenhuis H, Jensen J. Genome wide association study of body weight and feed efficiency traits in a commercial broiler chicken population, a re-visitation. Sci Rep. 2019;9(1):922. https://doi.org/10.1038/s41598-018-37216-z.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 23.

    Xu Z, Nie Q, Zhang X. Overview of genomic insights into chicken growth traits based on genome-wide association study and microRNA regulation. Curr Genomics. 2013;14(2):137–46. https://doi.org/10.2174/1389202911314020006.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    Van Goor A, Bolek KJ, Ashwell CM, Persia ME, Rothschild MF, Schmidt CJ, et al. Identification of quantitative trait loci for body temperature, body weight, breast yield, and digestibility in an advanced intercross line of chickens under heat stress. Genet Sel Evol. 2015;47:96. https://doi.org/10.1186/s12711-015-0176-7.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 25.

    Venturini GC, Stafuzza NB, Cardoso DF, Baldi F, Ledur MC, Peixoto JO, et al. Association between ACTA1 candidate gene and performance, organs and carcass traits in broilers. Poult Sci. 2015;94(12):2863–9. https://doi.org/10.3382/ps/pev285.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 26.

    Liu H, Xu H, Lan X, Cao X, Pan C. The InDel variants of sheep IGF2BP1 gene are associated with growth traits. Anim Biotechnol. 2021;1–9. https://doi.org/10.1080/10495398.2021.1942029.

  • 27.

    Liu R, Sun Y, Zhao G, Wang F, Wu D, Zheng M, et al. Genome-wide association study identifies Loci and candidate genes for body composition and meat quality traits in Beijing-You chickens. PLoS One. 2013;8(4):e61172. https://doi.org/10.1371/journal.pone.0061172.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Wei C, Hou D, Feng Y, Li T, Jing Z, Li W, et al. Molecular characterization and a duplicated 31-bp indel within the LDB2 gene and its associations with production performance in chickens. Gene. 2020;761:145046. https://doi.org/10.1016/j.gene.2020.145046.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 29.

    Wang H, Zhong J, Zhang C, Chai Z, Cao H, Wang J, et al. The whole-transcriptome landscape of muscle and adipose tissues reveals the ceRNA regulation network related to intramuscular fat deposition in yak. BMC Genomics. 2020;21(1):347. https://doi.org/10.1186/s12864-020-6757-z.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 30.

    Guo H, Bao Z, Li J, Lian S, Wang S, He Y, et al. Molecular characterization of TGF-beta type I receptor gene (Tgfbr1) in Chlamys farreri, and the association of allelic variants with growth traits. PLoS One. 2012;7(11):e51005. https://doi.org/10.1371/journal.pone.0051005.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 31.

    Matissek SJ, Elsawa SF. GLI3: a mediator of genetic diseases, development and cancer. Cell Commun Signal. 2020;18(1):54. https://doi.org/10.1186/s12964-020-00540-x.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 32.

    Abousoliman I, Reyer H, Oster M, Murani E, Mohamed I, Wimmers K. Genome-Wide Analysis for Early Growth-Related Traits of the Locally Adapted Egyptian Barki Sheep. Genes. 2021;12(8):1243. https://doi.org/10.3390/genes12081243.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Yu DY, Wu RZ, Zhao Y, Nie ZH, Wei L, Wang TY, et al. Polymorphisms of four candidate genes and their correlations with growth traits in blue fox (Alopex lagopus). Gene. 2019;717:143987. https://doi.org/10.1016/j.gene.2019.143987.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 34.

    Yang X, Ning Y, Mei C, Zhang W, Sun J, Wang S, et al. The role of BAMBI in regulating adipogenesis and myogenesis and the association between its polymorphisms and growth traits in cattle. Mol Biol Rep. 2020;47(8):5963–74. https://doi.org/10.1007/s11033-020-05670-6.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 35.

    Li S, Chen W, Zheng X, Liu Z, Yang G, Hu X, et al. Comparative investigation of coarse and fine wool sheep skin indicates the early regulators for skin and wool diversity. Gene. 2020;758:144968. https://doi.org/10.1016/j.gene.2020.144968.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 36.

    Allouche-Fitoussi D, Breitbart H. The Role of Zinc in Male Fertility. Int J Mol Sci. 2020;21(20):7796. https://doi.org/10.3390/ijms21207796.

    CAS 
    Article 
    PubMed Central 

    Google Scholar
     

  • 37.

    Jiang Q, Mei L, Zou Y, Ding Q, Cannon RD, Chen H, et al. Genetic Polymorphisms in FGFR2 Underlie Skeletal Malocclusion. J Dent Res. 2019;98(12):1340–7. https://doi.org/10.1177/0022034519872951.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 38.

    Hu Y, Xu H, Li Z, Zheng X, Jia X, Nie Q, et al. Comparison of the genome-wide DNA methylation profiles between fast-growing and slow-growing broilers. PLoS One. 2013;8(2):e56411. https://doi.org/10.1371/journal.pone.0056411.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 39.

    Percie du Sert N, et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biol. 2020;18(7):e3000410.

    CAS 
    Article 

    Google Scholar
     

  • 40.

    Zhang F, Deng HW. Correcting for cryptic relatedness in population-based association studies of continuous traits. Hum Hered. 2010;69(1):28–33. https://doi.org/10.1159/000243151.

    Article 
    PubMed 

    Google Scholar
     

  • 41.

    Meyer K. WOMBAT: a tool for mixed model analyses in quantitative genetics by restricted maximum likelihood (REML). J Zhejiang Univ-Sc B. 2007;8(11):815–21. https://doi.org/10.1631/jzus.2007.B0815.

    Article 

    Google Scholar
     

  • 42.

    Buchanan JW, Reecy JM, Garrick DJ, Duan Q, Beitz DC, Mateescu RG. Genetic parameters and genetic correlations among triacylglycerol and phospholipid fractions in Angus cattle. J Anim Sci. 2015;93(2):522–8.

    CAS 
    Article 

    Google Scholar
     

  • 43.

    Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. Nat Genet. 2000;25(1):25–9. https://doi.org/10.1038/75556 Gene Ontology Consortium.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 44.

    Gene Ontology Consortium. The Gene Ontology resource: enriching a GOld mine. Nucleic Acids Res. 2021;49(D1):D325–34. https://doi.org/10.1093/nar/gkaa1113.

    CAS 
    Article 

    Google Scholar
     

  • 45.

    Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30. https://doi.org/10.1093/nar/28.1.27.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 46.

    Kanehisa M, Furumichi M, Sato Y, Ishiguro-Watanabe M, Tanabe M. KEGG: integrating viruses and cellular organisms. Nucleic Acids Res. 2021;49(D1):D545–51. https://doi.org/10.1093/nar/gkaa970.

    CAS 
    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)