• 1.

    Albrecht DS, Mainero C, Ichijo E, Ward N, Granziera C, Zürcher NR, Akeju O, Bonnier G, Price J, Hooker JM, Napadow V, Loggia ML, Hadjikhani N (2019) Imaging of neuroinflammation in migraine with aura: a [(11) C]PBR28 PET/MRI study. Neurology 92(17):e2038–e2050. https://doi.org/10.1212/wnl.0000000000007371

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 2.

    Alli S, Figueiredo CA, Golbourn B, Sabha N, Wu MY, Bondoc A, Luck A, Coluccia D, Maslink C, Smith C, Wurdak H, Hynynen K, O’Reilly M, Rutka JT (2018) Brainstem blood brain barrier disruption using focused ultrasound: a demonstration of feasibility and enhanced doxorubicin delivery. J Control Release 281:29–41. https://doi.org/10.1016/j.jconrel.2018.05.005

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 3.

    Anonymous (2020) Five insights from the global burden of disease study 2019. Lancet 396(10258):1135–1159. https://doi.org/10.1016/s0140-6736(20)31404-5

    Article 

    Google Scholar
     

  • 4.

    Ashina M (2020) Migraine. N Engl J Med 383(19):1866–1876. https://doi.org/10.1056/NEJMra1915327

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 5.

    Bates EA, Nikai T, Brennan KC, Fu YH, Charles AC, Basbaum AI, Ptáček LJ, Ahn AH (2010) Sumatriptan alleviates nitroglycerin-induced mechanical and thermal allodynia in mice. Cephalalgia 30(2):170–178. https://doi.org/10.1111/j.1468-2982.2009.01864.x

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 6.

    Burstein R, Noseda R, Borsook D (2015) Migraine: multiple processes, complex pathophysiology. J Neurosci 35(17):6619–6629. https://doi.org/10.1523/jneurosci.0373-15.2015

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 7.

    Casili G, Lanza M, Filippone A, Campolo M, Paterniti I, Cuzzocrea S, Esposito E (2020) Dimethyl fumarate alleviates the nitroglycerin (NTG)-induced migraine in mice. J Neuroinflammation 17(1):59. https://doi.org/10.1186/s12974-020-01736-1

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 8.

    Cavestro C, Ferrero M, Mandrino S, di Tavi M, Rota E (2019) Novelty in inflammation and immunomodulation in migraine. Curr Pharm Des 25(27):2919–2936. https://doi.org/10.2174/1381612825666190709204107

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 9.

    Cetinkaya A, Kilinc E, Camsari C, Ogun MN (2020) Effects of estrogen and progesterone on the neurogenic inflammatory neuropeptides: implications for gender differences in migraine. Exp Brain Res 238(11):2625–2639. https://doi.org/10.1007/s00221-020-05923-7

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 10.

    Chanda ML, Tuttle AH, Baran I, Atlin C, Guindi D, Hathaway G, Israelian N, Levenstadt J, Low D, Macrae L, O’Shea L, Silver A, Zendegui E, Lenselink MA, Spijker S, Ferrari MD, van den Maagdenberg AMJM, Mogil JS (2013) Behavioral evidence for photophobia and stress-related ipsilateral head pain in transgenic Cacna1a mutant mice. Pain 154(8):1254–1262. https://doi.org/10.1016/j.pain.2013.03.038

    Article 
    PubMed 

    Google Scholar
     

  • 11.

    Chen H, Pan T, Liu P, Wang P, Xu S (2019) Baihu Jia Guizhi decoction improves rheumatoid arthritis inflammation by regulating succinate/SUCNR1 metabolic signaling pathway. Evid Based Complement Alternat Med 2019:3258572. https://doi.org/10.1155/2019/3258572

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 12.

    Chou TM, Chen SP (2018) Animal models of chronic migraine. Curr Pain Headache Rep 22(6):44. https://doi.org/10.1007/s11916-018-0693-5

    Article 
    PubMed 

    Google Scholar
     

  • 13.

    Covelli V, Munno I, Pellegrino NM, Altamura M, Decandia P, Marcuccio C, di Venere A, Jirillo E (1991) Are TNF-alpha and IL-1 beta relevant in the pathogenesis of migraine without aura? Acta Neurol (Napoli) 13(2):205–211

    CAS 

    Google Scholar
     

  • 14.

    Demartini C, Greco R, Zanaboni AM, Sances G, de Icco R, Borsook D, Tassorelli C (2019) Nitroglycerin as a comparative experimental model of migraine pain: from animal to human and back. Prog Neurobiol 177:15–32. https://doi.org/10.1016/j.pneurobio.2019.02.002

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 15.

    Diehl KH, Hull R, Morton D, Pfister R, Rabemampianina Y, Smith D, Vidal JM, van de Vorstenbosch C, European Federation of Pharmaceutical Industries Association and European Centre for the Validation of Alternative Methods (2001) A good practice guide to the administration of substances and removal of blood, including routes and volumes. J Appl Toxicol 21(1):15–23. https://doi.org/10.1002/jat.727

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 16.

    Dodick DW (2018) A phase-by-phase review of migraine pathophysiology. Headache 58(Suppl 1):4–16. https://doi.org/10.1111/head.13300

    Article 
    PubMed 

    Google Scholar
     

  • 17.

    Duarte-Delgado NP, Vásquez G, Ortiz-Reyes BL (2019) Blood-brain barrier disruption and neuroinflammation as pathophysiological mechanisms of the diffuse manifestations of neuropsychiatric systemic lupus erythematosus. Autoimmun Rev 18(4):426–432. https://doi.org/10.1016/j.autrev.2018.12.004

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 18.

    Edvinsson L, Haanes KA, Warfvinge K (2019) Does inflammation have a role in migraine? Nat Rev Neurol 15(8):483–490. https://doi.org/10.1038/s41582-019-0216-y

    Article 

    Google Scholar
     

  • 19.

    Erdener ŞE, Kaya Z, Dalkara T (2021) Parenchymal neuroinflammatory signaling and dural neurogenic inflammation in migraine. J Headache Pain 22(1):138. https://doi.org/10.1186/s10194-021-01353-0

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Faraco G, Brea D, Garcia-Bonilla L, Wang G, Racchumi G, Chang H, Buendia I, Santisteban MM, Segarra SG, Koizumi K, Sugiyama Y, Murphy M, Voss H, Anrather J, Iadecola C (2018) Dietary salt promotes neurovascular and cognitive dysfunction through a gut-initiated TH17 response. Nat Neurosci 21(2):240–249. https://doi.org/10.1038/s41593-017-0059-z

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 21.

    Gautam M, Ramanathan M (2021) Ameliorative potential of flavonoids of Aegle marmelos in vincristine-induced neuropathic pain and associated excitotoxicity. Nutr Neurosci 24(4):296–306. https://doi.org/10.1080/1028415x.2019.1627768

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 22.

    Giesen J, Füchtbauer EM, Füchtbauer A, Funke K, Koesling D, Russwurm M (2020) AMPA induces NO-dependent cGMP signals in hippocampal and cortical neurons via L-type voltage-gated calcium channels. Cereb Cortex 30(4):2128–2143. https://doi.org/10.1093/cercor/bhz227

    Article 
    PubMed 

    Google Scholar
     

  • 23.

    Goverman J (2009) Autoimmune T cell responses in the central nervous system. Nat Rev Immunol 9(6):393–407. https://doi.org/10.1038/nri2550

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    Greco R, Demartini C, Zanaboni A, Casini I, de Icco R, Reggiani A, Misto A, Piomelli D, Tassorelli C (2021) Characterization of the peripheral FAAH inhibitor, URB937, in animal models of acute and chronic migraine. Neurobiol Dis 147:105157. https://doi.org/10.1016/j.nbd.2020.105157

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 25.

    Greco R, Demartini C, Zanaboni AM, Tassorelli C (2018) Chronic and intermittent administration of systemic nitroglycerin in the rat induces an increase in the gene expression of CGRP in central areas: potential contribution to pain processing. J Headache Pain 19(1):51. https://doi.org/10.1186/s10194-018-0879-6

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 26.

    Guo Z, Czerpaniak K, Zhang J, Cao YQ (2021) Increase in trigeminal ganglion neurons that respond to both calcitonin gene-related peptide and pituitary adenylate cyclase-activating polypeptide in mouse models of chronic migraine and posttraumatic headache. Pain 162(5):1483–1499. https://doi.org/10.1097/j.pain.0000000000002147

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 27.

    Juhasz G, Zsombok T, Jakab B, Nemeth J, Szolcsanyi J, Bagdy G (2005) Sumatriptan causes parallel decrease in plasma calcitonin gene-related peptide (CGRP) concentration and migraine headache during nitroglycerin induced migraine attack. Cephalalgia 25(3):179–183. https://doi.org/10.1111/j.1468-2982.2005.00836.x

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 28.

    Kilinc E, Ankarali S, Torun IE, Dagistan Y (2020) Receptor mechanisms mediating the anti-neuroinflammatory effects of endocannabinoid system modulation in a rat model of migraine. Eur J Neurosci. https://doi.org/10.1111/ejn.14897

  • 29.

    Kilinc E, Tore F, Dagistan Y, Bugdayci G (2020) Thymoquinone inhibits neurogenic inflammation underlying migraine through modulation of calcitonin gene-related peptide release and stabilization of meningeal mast cells in Glyceryltrinitrate-induced migraine model in rats. Inflammation 43(1):264–273. https://doi.org/10.1007/s10753-019-01115-w

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 30.

    Knapp L, Szita B, Kocsis K, Vécsei L, Toldi J (2017) Nitroglycerin enhances the propagation of cortical spreading depression: comparative studies with sumatriptan and novel kynurenic acid analogues. Drug Des Devel Ther 11:27–34. https://doi.org/10.2147/dddt.s117166

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 31.

    Korn T, Kallies A (2017) T cell responses in the central nervous system. Nat Rev Immunol 17(3):179–194. https://doi.org/10.1038/nri.2016.144

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 32.

    Koyuncu Irmak D, Kilinc E, Tore F (2019) Shared fate of meningeal mast cells and sensory neurons in migraine. Front Cell Neurosci 13:136. https://doi.org/10.3389/fncel.2019.00136

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Li Y, Zhang Q, Qi D, Zhang L, Yi L, Li Q, Zhang Z (2016) Valproate ameliorates nitroglycerin-induced migraine in trigeminal nucleus caudalis in rats through inhibition of NF-кB. J Headache Pain 17(1):49. https://doi.org/10.1186/s10194-016-0631-z

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 34.

    Lipton RB, Goadsby PJ, Smith J, Schaeffler BA, Biondi DM, Hirman J, Pederson S, Allan B, Cady R (2020) Efficacy and safety of eptinezumab in patients with chronic migraine: PROMISE-2. Neurology 94(13):e1365–e1377. https://doi.org/10.1212/wnl.0000000000009169

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 35.

    Liu Z, Qiu AW, Huang Y, Yang Y, Chen JN, Gu TT, Cao BB, Qiu YH, Peng YP (2019) IL-17A exacerbates neuroinflammation and neurodegeneration by activating microglia in rodent models of Parkinson’s disease. Brain Behav Immun 81:630–645. https://doi.org/10.1016/j.bbi.2019.07.026

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 36.

    Long T, He W, Pan Q, Zhang S, Zhang D, Qin G, Chen L, Zhou J (2020) Microglia P2X4R-BDNF signalling contributes to central sensitization in a recurrent nitroglycerin-induced chronic migraine model. J Headache Pain 21(1):4. https://doi.org/10.1186/s10194-019-1070-4

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 37.

    Mcgeachy MJ, Cua DJ, Gaffen SL (2019) The IL-17 family of cytokines in health and disease. Immunity 50(4):892–906. https://doi.org/10.1016/j.immuni.2019.03.021

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 38.

    Niu J, Tsai HH, Hoi KK, Huang N, Yu G, Kim K, Baranzini SE, Xiao L, Chan JR, Fancy SPJ (2019) Aberrant oligodendroglial-vascular interactions disrupt the blood-brain barrier, triggering CNS inflammation. Nat Neurosci 22(5):709–718. https://doi.org/10.1038/s41593-019-0369-4

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 39.

    Nozaki C, Markert A, Zimmer A (2015) Inhibition of FAAH reduces nitroglycerin-induced migraine-like pain and trigeminal neuronal hyperactivity in mice. Eur Neuropsychopharmacol 25(8):1388–1396. https://doi.org/10.1016/j.euroneuro.2015.04.001

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 40.

    Pradhan AA, Smith ML, Mcguire B et al (2014) Characterization of a novel model of chronic migraine. Pain 155(2):269–274. https://doi.org/10.1016/j.pain.2013.10.004

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 41.

    Sances G, Tassorelli C, Pucci E, Ghiotto N, Sandrini G, Nappi G (2004) Reliability of the nitroglycerin provocative test in the diagnosis of neurovascular headaches. Cephalalgia 24(2):110–119. https://doi.org/10.1111/j.1468-2982.2004.00639.x

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 42.

    Schulte LH, Allers A, May A (2017) Hypothalamus as a mediator of chronic migraine: evidence from high-resolution fMRI. Neurology 88(21):2011–2016. https://doi.org/10.1212/wnl.0000000000003963

    Article 
    PubMed 

    Google Scholar
     

  • 43.

    Schulte LH, May A (2016) The migraine generator revisited: continuous scanning of the migraine cycle over 30 days and three spontaneous attacks. Brain 139(7):1987–1993. https://doi.org/10.1093/brain/aww097

    Article 
    PubMed 

    Google Scholar
     

  • 44.

    Sufka KJ, Staszko SM, Johnson AP, Davis ME, Davis RE, Smitherman TA (2016) Clinically relevant behavioral endpoints in a recurrent nitroglycerin migraine model in rats. J Headache Pain 17(1):40. https://doi.org/10.1186/s10194-016-0624-y

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 45.

    Sulhan S, Lyon KA, Shapiro LA, Huang JH (2020) Neuroinflammation and blood-brain barrier disruption following traumatic brain injury: pathophysiology and potential therapeutic targets. J Neurosci Res 98(1):19–28. https://doi.org/10.1002/jnr.24331

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 46.

    Tardiolo G, Bramanti P, Mazzon E (2019) Migraine: experimental models and novel therapeutic approaches. Int J Mol Sci 20(12). https://doi.org/10.3390/ijms20122932

  • 47.

    Tasleem F, Azhar I, Ali SN et al (2014) Analgesic and anti-inflammatory activities of Piper nigrum L. Asian Pac J trop med 7s1:S461-468. https://doi.org/10.1016/s1995-7645(14)60275-3

  • 48.

    Turksen K (2011) Permeability barrier. Humana Press. https://doi.org/10.1007/978-1-61779-191-8

  • 49.

    Van Vliet EA, Ndode-Ekane XE, Lehto LJ et al (2020) Long-lasting blood-brain barrier dysfunction and neuroinflammation after traumatic brain injury. Neurobiol Dis 145:105080. https://doi.org/10.1016/j.nbd.2020.105080

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 50.

    Vellani V, Moschetti G, Franchi S, Giacomoni C, Sacerdote P, Amodeo G (2017) Effects of NSAIDs on the release of calcitonin gene-related peptide and prostaglandin E (2) from rat trigeminal ganglia. Mediat Inflamm 2017:9547056. https://doi.org/10.1155/2017/9547056

    CAS 
    Article 

    Google Scholar
     

  • 51.

    Waisman A, Hauptmann J, Regen T (2015) The role of IL-17 in CNS diseases. Acta Neuropathol 129(5):625–637. https://doi.org/10.1007/s00401-015-1402-7

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 52.

    Warfvinge K, Edvinsson L (2019) Distribution of CGRP and CGRP receptor components in the rat brain. Cephalalgia 39(3):342–353. https://doi.org/10.1177/0333102417728873

    Article 
    PubMed 

    Google Scholar
     

  • 53.

    Wen W, Chen H, Fu K, Wei J, Qin L, Pan T, Xu S (2020) Fructus Viticis methanolic extract attenuates trigeminal hyperalgesia in migraine by regulating injury signal transmission. Exp Ther Med 19(1):85–94. https://doi.org/10.3892/etm.2019.8201

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 54.

    Yao G, Man YH, Li AR et al. (2020) NO up-regulates migraine-related CGRP via activation of an Akt/GSK-3β/NF-κB signaling cascade in trigeminal ganglion neurons. Aging 12:6370-6384. https://doi.org/10.18632/aging.103031

  • 55.

    Zhang S, Hu L, Jiang J, Li H, Wu Q, Ooi K, Wang J, Feng Y, Zhu D, Xia C (2020) HMGB1/RAGE axis mediates stress-induced RVLM neuroinflammation in mice via impairing mitophagy flux in microglia. J Neuroinflammation 17(1):15. https://doi.org/10.1186/s12974-019-1673-3

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)