• 1.

    Cuman C, Menkhorst E, Winship A, Van Sinderen M, Osianlis T, Rombauts LJ, et al. Fetal-maternal communication: The role of Notch signalling in embryo implantation. Reproduction. 2014;147(3):R75-86.

    PubMed 
    CAS 

    Google Scholar
     

  • 2.

    Kurian NK, Modi D. Extracellular vesicle mediated embryo-endometrial cross talk during implantation and in pregnancy. J Assist Reprod Genet. 2019;36:189–98 (Springer New York LLC).

    PubMed 

    Google Scholar
     

  • 3.

    Norwitz ER, Schust DJ, Fisher SJ. Implantation and the Survival of Early Pregnancy. N Engl J Med. 2001;345:1400–8 (Massachusetts Medical Society).

    PubMed 
    CAS 

    Google Scholar
     

  • 4.

    Lessey BA, Young SL. What exactly is endometrial receptivity? Fertil Steril. 2019;111:611–7.

    PubMed 

    Google Scholar
     

  • 5.

    Greening DW, Nguyen HPT, Elgass K, Simpson RJ, Salamonsen LA. Human endometrial exosomes contain hormone-specific cargo modulating trophoblast adhesive capacity: Insights into endometrial-embryo interactions. Biol Reprod. 2016;94:38 (Society for the Study of Reproduction).

    PubMed 

    Google Scholar
     

  • 6.

    Bhusane K, Bhutada S, Chaudhari U, Savardekar L, Katkam R. Sachdeva G. Secrets of Endometrial Receptivity: Some Are Hidden in Uterine Secretome. Am J Reprod Immunol. 2016;75:226–36 (Blackwell Publishing Ltd).

    PubMed 

    Google Scholar
     

  • 7.

    Tan Q, Shi S, Liang J, Zhang X, Cao D, Wang Z. MicroRNAs in Small Extracellular Vesicles Indicate Successful Embryo Implantation during Early Pregnancy. Cells. 2020;9:645 (NLM (Medline)).

    PubMed Central 
    CAS 

    Google Scholar
     

  • 8.

    Raposo G, Stoorvogel W. Extracellular vesicles: Exosomes, microvesicles, and friends. J Cell Biol. 2013;200:373–83.

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 9.

    Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 2014;30:255–89.

    PubMed 
    CAS 

    Google Scholar
     

  • 10.

    Abels ER, Breakefield XO. Introduction to Extracellular Vesicles: Biogenesis, RNA Cargo Selection, Content, Release, and Uptake. Cell Mol Neurobiol. 2016;36:301–12 (Springer New York LLC).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 11.

    Tkach M, Théry C. Communication by Extracellular Vesicles: Where We Are and Where We Need to Go. Cell. 2016;164:1226–32 (Cell Press).

    PubMed 
    CAS 

    Google Scholar
     

  • 12.

    Théry C. Exosomes: Secreted vesicles and intercellular communications. F1000 Biol Rep. 2011;3:15.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 13.

    Yang C, Guo WB, Zhang WS, Bian J, Yang JK, Zhou QZ, et al. Comprehensive proteomics analysis of exosomes derived from human seminal plasma. Andrology Blackwell Publishing Ltd. 2017;5:1007–15.

    CAS 

    Google Scholar
     

  • 14.

    Santonocito M, Vento M, Guglielmino MR, Battaglia R, Wahlgren J, Ragusa M, et al. Molecular characterization of exosomes and their microRNA cargo in human follicular fluid: Bioinformatic analysis reveals that exosomal microRNAs control pathways involved in follicular maturation. Fertil Steril. 2014;102:1751–61 (e1. Elsevier Inc).

    PubMed 
    CAS 

    Google Scholar
     

  • 15.

    Bathala P, Fereshteh Z, Li K, Al-Dossary AA, Galileo DS, Martin-DeLeon PA. Oviductal extracellular vesicles (oviductosomes, OVS) are conserved in humans: Murine OVS play a pivotal role in sperm capacitation and fertility. Mol Hum Reprod Oxford University Press. 2018;24:143–57.

    CAS 

    Google Scholar
     

  • 16.

    Luddi A, Zarovni N, Maltinti E, Governini L, De Leo V, Cappelli V, et al. Clues to Non-Invasive Implantation Window Monitoring: Isolation and Characterisation of Endometrial Exosomes. Cells. 2019;8:811 (NLM (Medline)).

    PubMed Central 
    CAS 

    Google Scholar
     

  • 17.

    Abu-Halima M, Häusler S, Backes C, Fehlmann T, Staib C, Nestel S, et al. Micro-ribonucleic acids and extracellular vesicles repertoire in the spent culture media is altered in women undergoing In Vitro Fertilization. Sci Rep. 2017;7:13525 (Nature Publishing Group).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 18.

    Pallinger E, Bognar Z, Bodis J, Csabai T, Farkas N, Godony K, et al. A simple and rapid flow cytometry-based assay to identify a competent embryo prior to embryo transfer. Sci Rep. 2017;7:39927 (Nature Publishing Group).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 19.

    Evans J, Rai A, Nguyen HPT, Poh QH, Elglass K, Simpson RJ, et al. Human Endometrial Extracellular Vesicles Functionally Prepare Human Trophectoderm Model for Implantation: Understanding Bidirectional Maternal-Embryo Communication. Proteomics. 2019;19:e1800423 (Wiley-VCH Verlag).

    PubMed 

    Google Scholar
     

  • 20.

    Gurung S, Greening DW, Catt S, Salamonsen L, Evans J. Exosomes and soluble secretome from hormone-treated endometrial epithelial cells direct embryo implantation. Mol Hum Reprod Oxford University Press. 2020;26:510–20.

    CAS 

    Google Scholar
     

  • 21.

    Machtinger R, Laurent LC, Baccarelli AA. Extracellular vesicles: Roles in gamete maturation, fertilization and embryo implantation. Hum Reprod Update. 2016;22:182–93 (Oxford University Press).

    PubMed 
    CAS 

    Google Scholar
     

  • 22.

    Liu C, Yao W, Yao J, Li L, Yang L, Zhang H, et al. Endometrial extracellular vesicles from women with recurrent implantation failure attenuate the growth and invasion of embryos. Fertil Steril. 2020;114:416–25 (Elsevier Inc).

    PubMed 
    CAS 

    Google Scholar
     

  • 23.

    Ng YH, Rome S, Jalabert A, Forterre A, Singh H, Hincks CL, et al. Endometrial Exosomes/Microvesicles in the Uterine Microenvironment: A New Paradigm for Embryo-Endometrial Cross Talk at Implantation. PLoS ONE. 2013;8:e58502.

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 24.

    Vilella F, Moreno-Moya JM, Balaguer N, Grasso A, Herrero M, Martínez S, et al. Hsa-miR-30d, secreted by the human endometrium, is taken up by the pre-implantation embryo and might modify its transcriptome. Dev Company of Biologists Ltd. 2015;142:3210–21.

    CAS 

    Google Scholar
     

  • 25.

    Royo F, Zuñiga-Garcia P, Sanchez-Mosquera P, Egia A, Perez A, Loizaga A, et al. Different EV enrichment methods suitable for clinical settings yield different subpopulations of urinary extracellular vesicles from human samples. J Extracell Vesicles. 2016;5:29497 (Taylor and Francis Ltd).

    PubMed 

    Google Scholar
     

  • 26.

    Helwa I, Cai J, Drewry MD, Zimmerman A, Dinkins MB, Khaled ML, et al. A comparative study of serum exosome isolation using differential ultracentrifugation and three commercial reagents. PLoS ONE. 2017;12:e0170628 (Public Library of Science).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 27.

    Hannan NJ, Paiva P, Dimitriadis E, Salamonsen LA. Models for study of human embryo implantation: choice of cell lines? Biol Reprod. 2010;82:235–45.

    PubMed 
    CAS 

    Google Scholar
     

  • 28.

    Gundry RL, White MY, Murray CI, Kane LA, Fu Q, Stanley BA, et al. Preparation of proteins and peptides for mass spectrometry analysis in a bottom-up proteomics workflow. Curr Protoc Mol Biol. NIH Public Access; 2009;CHAPTER:Unit10.25.

  • 29.

    Mateos J, Carneiro I, Corrales F, Elortza F, Paradela A, del Pino MS, et al. Multicentric study of the effect of pre-analytical variables in the quality of plasma samples stored in biobanks using different complementary proteomic methods. J Proteomics. 2017;150:109–20.

    PubMed 
    CAS 

    Google Scholar
     

  • 30.

    Konoshenko MY, Lekchnov EA, Vlassov AV, Laktionov PP. Isolation of Extracellular Vesicles: General Methodologies and Latest Trends. Biomed Res Int. 2018;2018:8545347 (Hindawi Limited).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 31.

    Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018;7:1535750 (Taylor and Francis Ltd).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 32.

    Van Deun J, Mestdagh P, Sormunen R, Cocquyt V, Vermaelen K, Vandesompele J, et al. The impact of disparate isolation methods for extracellular vesicles on downstream RNA profiling. J Extracell Vesicles. 2014;18:3 (Co-Action Publishing).


    Google Scholar
     

  • 33.

    Li T, Greenblatt EM, Shin MEJ, Brown TJ, Chan C. Cargo small non-coding RNAs of extracellular vesicles isolated from uterine fluid associate with endometrial receptivity and implantation success. Fertil Steril. 2021;115:1327–36 (Elsevier Inc).

    PubMed 
    CAS 

    Google Scholar
     

  • 34.

    Parmar T, Gadkar-Sable S, Savardekar L, Katkam R, Dharma S, Meherji P, et al. Protein profiling of human endometrial tissues in the midsecretory and proliferative phases of the menstrual cycle. Fertil Steril. 2009;92:1091–103.

    PubMed 
    CAS 

    Google Scholar
     

  • 35.

    Bhagwat SR, Chandrashekar DS, Kakar R, Davuluri S, Bajpai AK, Nayak S, et al. Endometrial Receptivity: A Revisit to Functional Genomics Studies on Human Endometrium and Creation of HGEx-ERdb. PLoS ONE. 2013;8:e58419.

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 36.

    Rai A, Poh QH, Fatmous M, Fang H, Gurung S, Vollenhoven B, et al. Proteomic profiling of human uterine extracellular vesicles reveal dynamic regulation of key players of embryo implantation and fertility during menstrual cycle. Proteomics. 2021;21:e2000211.

    PubMed 

    Google Scholar
     

  • 37.

    Balestrieri ML, Gasparrini B, Neglia G, Vecchio D, Strazzullo M, Giovane A, et al. Proteomic Profiles of the Embryonic Chorioamnion and Uterine Caruncles in Buffaloes (Bubalus bubalis) with Normal and Retarded Embryonic Development. Biol Reprod. 2013;88:119.

    PubMed 

    Google Scholar
     

  • 38.

    Wang B, Shao Y. Annexin A2 acts as an adherent molecule under the regulation of steroids during embryo implantation. Mol Hum Reprod Oxford University Press. 2020;26:825–36.

    CAS 

    Google Scholar
     

  • 39.

    Garrido-Gomez T, Quiñonero A, Dominguez F, Rubert L, Perales A, Hajjar KA, et al. Preeclampsia: a defect in decidualization is associated with deficiency of Annexin A2. Am J Obstet Gynecol. 2020;222:376 (Mosby Inc e1–376.e17).

    PubMed 

    Google Scholar
     

  • 40.

    Allegra A, Marino A, Peregrin PC, Lama A, García-Segovia Á, Forte GI, et al. Endometrial expression of selected genes in patients achieving pregnancy spontaneously or after ICSI and patients failing at least two ICSI cycles. Reprod Biomed Online. 2012;25:481–91.

    PubMed 
    CAS 

    Google Scholar
     

  • 41.

    Dziadek M, Darling P, Zhang RZ, Pan TC, Tillet E, Timpl R, et al. Expression of collagen α1(VI), α2(VI), and α3(VI) chains in the pregnant mouse uterus. Biol Reprod. 1995;52:885–94.

    PubMed 
    CAS 

    Google Scholar
     

  • 42.

    Sueoka K, Kuji N, Shiokawa S, Tanaka M, Miyazaki T, Yoshimura Y. Integrins and reproductive physiology: Expression and modulation in fertilization, embryogenesis, and implantation. Fertil Steril Elsevier Inc. 1997;67:799–811.

    CAS 

    Google Scholar
     

  • 43.

    Wu F, Chen X, Liu Y, Liang B, Xu H, Li TC, et al. Decreased MUC1 in endometrium is an independent receptivity marker in recurrent implantation failure during implantation window. Reprod Biol Endocrinol. 2018;16:60 (BioMed Central Ltd).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 44.

    Chen S, Liu B, Li J, Liao S, Bi Y, Huang W, et al. Talin1 regulates endometrial adhesive capacity through the Ras signaling pathway. Life Sci Elsevier Inc. 2021;274:119332.

    CAS 

    Google Scholar
     

  • 45.

    Aberkane A, Essahib W, Spits C, De Paepe C, Sermon K, Adriaenssens T, et al. Expression of adhesion and extracellular matrix genes in human blastocysts upon attachment in a 2D co-culture system. Mol Hum Reprod. 2018;24:375–87.

    PubMed 
    CAS 

    Google Scholar
     

  • 46.

    Campbell S, Swann HR, Seif MW, Kimber SJ, Aplin JD. Integrins and adhesion mlecules: Cell adhesion molecules on the oocyte and preimplantation human embryo. Hum Reprod. 1995;10:1571–8.

    PubMed 
    CAS 

    Google Scholar
     

  • 47.

    Illera MJ, Cullinan E, Gui Y, Yuan L, Beyler SA, Lessey BA. Blockade of the α(v)β3 integrin adversely affects implantation in the mouse. Biol Reprod. 2000;62:1285–90.

    PubMed 
    CAS 

    Google Scholar
     

  • 48.

    Li T, Greenblatt EM, Shin MEJ, Brown TJ, Chan C. Endometrial laminin subunit beta-3 expression associates with reproductive outcome in patients with repeated implantation failure. J Assist Reprod Genet J Assist Reprod Genet. 2021;38:1835–42.

    PubMed 

    Google Scholar
     

  • 49.

    Shimomura Y, Ando H, Furugori K, Kajiyama H, Suzuki M, Iwase A, et al. Possible involvement of crosstalk cell-adhesion mechanism by endometrial CD26/dipeptidyl peptidase IV and embryonal fibronectin in human blastocyst implantation. Mol Hum Reprod. 2006;12:491–5.

    PubMed 
    CAS 

    Google Scholar
     

  • 50.

    de Almeida PG, Pinheiro GG, Nunes AM, Gonçalves AB, Thorsteinsdóttir S. Fibronectin assembly during early embryo development: A versatile communication system between cells and tissues. Dev Dyn. 2016;245:520–35.

    PubMed 

    Google Scholar
     

  • 51.

    Wang J, Armant DR. Integrin-mediated adhesion and signaling during blastocyst implantation. Cells Tissues Organs. 2002;172:190–201.

    PubMed 
    CAS 

    Google Scholar
     

  • 52.

    Lee CJ, Hong SH, Yoon MJ, Lee KA, Ko JJ, Koo HS, et al. Endometrial profilin 1: A key player in embryoendometrial crosstalk. Clin Exp Reprod Med. 2020;47:114–21.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 53.

    García P, Nieto A, Sánchez MA, Pizarro M, Flores JM. Expression of alphav, alpha4, alpha5 and beta3 integrin subunits, fibronectin and vitronectin in goat peri-implantation. Anim Reprod Sci. 2004;80:91–100.

    PubMed 

    Google Scholar
     

  • 54.

    Jeong Y, Ock SA, Yoo JG, Yu DY, Choi I. The Cxadr–Adam10 complex plays pivotal roles in tight junction integrity and early trophoblast development in mice. Mol Reprod Dev. 2019;86:1628–38.

    PubMed 
    CAS 

    Google Scholar
     

  • 55.

    Nishioka Y, Higuchi T, Sato Y, Yoshioka S, Tatsumi K, Fujiwara H, et al. Human migrating extravillous trophoblasts express a cell surface peptidase, carboxypeptidase-M. Mol Hum Reprod. 2003;9:799–806.

    PubMed 
    CAS 

    Google Scholar
     

  • 56.

    Lee H, Ismail T, Kim Y, Chae S, Ryu HY, Lee DS, et al. Xenopus gpx3 mediates posterior development by regulating cell death during embryogenesis. Antioxidants (Basel). 2020;9:1–12.


    Google Scholar
     

  • 57.

    Huang X, Hao C, Shen X, Zhang Y, Liu X. RUNX2, GPX3 and PTX3 gene expression profiling in cumulus cells are reflective oocyte/embryo competence and potentially reliable predictors of embryo developmental competence in PCOS patients. Reprod Biol Endocrinol. 2013;11:109.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 58.

    Mao J, O’Gorman C, Sutovsky M, Zigo M, Wells KD, Sutovsky P. Ubiquitin A-52 residue ribosomal protein fusion product 1 (Uba52) is essential for preimplantation embryo development. Biol Open. 2018;7:bio035717.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)