• 1.

    Brown MS, Goldstein JL. Lipoprotein metabolism in the macrophage: implications for cholesterol deposition in atherosclerosis. Annu Rev Biochem. 1983;52:223–61.

    CAS 
    PubMed 

    Google Scholar
     

  • 2.

    Pluddemann A, Mukhopadhyay S, Gordon S. Innate immunity to intracellular pathogens: macrophage recep- tors and responses to microbial entry. Immunol Rev. 2011;240:11–24.

    CAS 
    PubMed 

    Google Scholar
     

  • 3.

    Kishore U. Target pattern recognition in innate immunity. Preface Adv Exp Med Biol. 2009;653:9–10.


    Google Scholar
     

  • 4.

    Areschoug T, Gordon S. Scavenger receptors: role in innate immunity and microbial pathogenesis. Cell Microbiol. 2009;11:1160–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 5.

    Plüddemann A, Neyen C, Gordon S. Macrophage scavenger receptors and host-derived ligands. Methods. 2007

  • 6.

    Gordon S. Pattern recognition receptors: doubling up for the innate immune response. Cell. 2002;111:927–30.

    CAS 
    PubMed 

    Google Scholar
     

  • 7.

    Mukhopadhyay S, Gordon S. The role of scavenger receptors in pathogen recognition and innate immunity. Immunobiology. 2004;209:39–49.

    CAS 
    PubMed 

    Google Scholar
     

  • 8.

    Murphy JE, Tedbury PR, Homer-Vanniasinkam S, Walker JH, Ponnambalam S. Biochemistry and cell biology of mammalian scavenger receptors. Atherosclerosis. 2005;182:1–15.

    CAS 
    PubMed 

    Google Scholar
     

  • 9.

    Areschoug T, Gordon S. Pattern recognition receptors and their role in innate immunity: focus on microbial protein ligands. Trends Innate Immun. 2008;15:45–60.

    CAS 

    Google Scholar
     

  • 10.

    Zani IA, Stephen SL, Mughal NA, Russell D, Homer-Vanniasinkam S, Wheatcroft SB, et al. Scavenger receptor structure and function in health and disease. Cells. 2015;4:178–201.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 11.

    PrabhuDas MR, Baldwin CL, Bollyky PL, Bowdish DM, Drickamer K, Febbraio M, Herz J, Kobzik L, Krieger M, Loike J, McVicker B. A consensus definitive classification of scavenger receptors and their roles in health and disease. J Immunol Res. 2017;198:3775–89.

    CAS 

    Google Scholar
     

  • 12.

    Krieger M. The other side of scavenger receptors: pattern recognition for host defense. Curr Opin Lipidol. 1997;8:275–80.

    CAS 
    PubMed 

    Google Scholar
     

  • 13.

    Yu H, Ha T, Liu L, Wang X, Gao M, Kelley J, et al. Scavenger receptor A (SR-A) is required for LPS-induced TLR4 mediated NF-κB activation in macrophages. Biochim Biophys Acta. 2012;1823:1192–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 14.

    Hampton RY, Golenbock DT, Penman M, Krieger M, Raetz CR. Recognition and plasma clearance of endotoxin by scavenger receptors. Nature. 1999;352:342–4.


    Google Scholar
     

  • 15.

    Dunne DW, Resnick D, Greenberg J, Krieger M, Joiner KA. The type I macrophage scavenger receptor binds to gram-positive bacteria and recognizes lipoteichoic acid. Proc Natl Acad Sci. 1994;91:1863–7.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Peiser L, Makepeace K, Plüddemann A, Savino S, Wright JC, Pizza M, et al. Identification of Neisseria meningitidis nonlipopolysaccharide ligands for class A macrophage scavenger receptor by using a novel assay. Infect Immun. 2006;74:5191–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 17.

    Thomas CA, Li Y, Kodama T, Suzuki H, Silverstein SC, El Khoury J. Protection from lethal Gram-positive infection by macrophage scavenger receptor–dependent phagocytosis. J Exp Med. 2000;191:147–56.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 18.

    Arredouani MS, Yang Z, Imrich A, Ning Y, Qin G, Kobzik L. The macrophage scavenger receptor SR-AI/II and lung defense against pneumococci and particles. Am J Respir Cell Mol Biol. 2006;35:474–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 19.

    Ojala JR, Pikkarainen T, Tuuttila A, Sandalova T, Tryggvason K. Crystal structure of the cysteine-rich domain of scavenger receptor MARCO reveals the presence of a basic and an acidic cluster that both contribute to ligand recognition. J Biol Chem. 2007;282:16654–66.

    CAS 
    PubMed 

    Google Scholar
     

  • 20.

    Plüddemann A, Mukhopadhyay S, Sankala M, Savino S, Pizza M, Rappuoli R, et al. SR-A, MARCO and TLRs differentially recognise selected surface proteins from Neisseria meningitidis: an example of fine specificity in microbial ligand recognition by innate immune receptors. J Innate Immun. 2009;1:153–63.

    PubMed 

    Google Scholar
     

  • 21.

    Fischer N, Haug M, Kwok WW, Kalbacher H, Wernet D, Dannecker GE, et al. Involvement of CD91 and scavenger receptors in Hsp70 facilitated activation of human antigen specific CD4+ memory T cells. Eur J Immunol. 2010;40:986–97.

    CAS 
    PubMed 

    Google Scholar
     

  • 22.

    Amiel E, Alonso A, Uematsu S, Akira S, Poynter ME, Berwin B. Pivotal Advance: toll like receptor regulation of scavenger receptor A mediated phagocytosis. J Leukoc Biol. 2009;85:595–605.

    CAS 
    PubMed 

    Google Scholar
     

  • 23.

    Bowdish DM, Sakamoto K, Kim MJ, Kroos M, Mukhopadhyay S, Leifer CA, et al. MARCO, TLR2, and CD14 are required for macrophage cytokine responses to mycobacterial trehalose dimycolate and Mycobacterium tuberculosis. PLoS Pathog. 2009;5.

  • 24.

    MacLeod DT, Nakatsuji T, Yamasaki K, Kobzik L, Gallo RL. HSV-1 exploits the innate immune scavenger receptor MARCO to enhance epithelial adsorption and infection. Nat Commun. 2013;4:1–9.


    Google Scholar
     

  • 25.

    Zizzo G, Hilliard BA, Monestier M, Cohen PL. Efficient clearance of early apoptotic cells by human macrophages requires M2c polarization and MerTK induction. J Immunol. 2012;189:3508–20.

    CAS 
    PubMed 

    Google Scholar
     

  • 26.

    Tian Y, Zhou K, Hu J, Shan MF, Chen HJ, Cheng S, et al. Scavenger receptor class a, member 3 is associated with severity of hand, foot, and mouth disease in a case-control study. Medicine. 2019;98.

  • 27.

    Ohtani K, Suzuki Y, Eda S, Kawai T, Kase T, Keshi H, et al. The membrane-type collectin CL-P1 is a scavenger receptor on vascular endothelial cells. J Biol Chem. 2001;276:44222–8.

    CAS 
    PubMed 

    Google Scholar
     

  • 28.

    Jang S, Ohtani K, Fukuoh A, Yoshizaki T, Fukuda M, Motomura W, et al. Scavenger receptor collectin placenta 1 (CL-P1) predominantly mediates zymosan phagocytosis by human vascular endothelial cells. J Biol Chem. 2009;284:3956–65.

    CAS 
    PubMed 

    Google Scholar
     

  • 29.

    Li JY, Paragas N, Ned RM, Qiu A, Viltard M, Leete T, et al. Scara5 is a ferritin receptor mediating non-transferrin iron delivery. Dev Cell. 2009;16:35–46.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 30.

    Yan N, Zhang S, Yang Y, Cheng L, Li C, Dai L, et al. Therapeutic upregulation of Class A scavenger receptor member 5 inhibits tumor growth and metastasis. Cancer Sci. 2012;103:1631–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 31.

    Bull HA, Brickell PM, Dowd PM. Src related protein tyrosine kinases are physically associated with the surface antigen CD36 in human dermal microvascular endothelial cells. FEBS Lett. 1994;351:41–4.

    CAS 
    PubMed 

    Google Scholar
     

  • 32.

    Stewart CR, Stuart LM, Wilkinson K, Van Gils JM, Deng J, Halle A, et al. CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nat Immunol. 2010;11:155.

    CAS 
    PubMed 

    Google Scholar
     

  • 33.

    Stuart LM, Deng J, Silver JM, Takahashi K, Tseng AA, Hennessy EJ, et al. Response to Staphylococcus aureus requires CD36-mediated phagocytosis triggered by the COOH-terminal cytoplasmic domain. J Cell Biol. 2005;170:477–85.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 34.

    Vishnyakova TG, Bocharov AV, Baranova IN, Chen Z, Remaley AT, Csako G, et al. Binding and internalization of lipopolysaccharide by Cla-1, a human orthologue of rodent scavenger receptor B1. J Biol Chem. 2003;278:22771–80.

    CAS 
    PubMed 

    Google Scholar
     

  • 35.

    Baranova IN, Vishnyakova TG, Bocharov AV, Leelahavanichkul A, Kurlander R, Chen Z, et al. Class B scavenger receptor types I and II and CD36 mediate bacterial recognition and proinflammatory signaling induced by Escherichia coli, lipopolysaccharide, and cytosolic chaperonin 60. J Immunol. 2012;188:1371–80.

    CAS 
    PubMed 

    Google Scholar
     

  • 36.

    Guo L, Zheng Z, Ai J, Huang B, Li XA. Hepatic scavenger receptor BI protects against polymicrobial-induced sepsis through promoting LPS clearance in mice. J Biol Chem. 2014;289:14666–73.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 37.

    Barth H, Schnober EK, Neumann-Haefelin C, Thumann C, Zeisel MB, Diepolder HM, et al. Scavenger receptor class B is required for hepatitis C virus uptake and cross-presentation by human dendritic cells. J Virol. 2008;82:3466–79.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 38.

    Dieudonné A, Torres D, Blanchard S, Taront S, Jeannin P, Delneste Y, et al. Scavenger receptors in human airway epithelial cells: role in response to double-stranded RNA. PLoS ONE. 2012;7.

  • 39.

    Yalaoui S, Huby T, Franetich JF, Gego A, Rametti A, Moreau M, et al. Scavenger receptor BI boosts hepatocyte permissiveness to Plasmodium infection. Cell Host Microbe. 2008;4:283–92.

    CAS 
    PubMed 

    Google Scholar
     

  • 40.

    Schäfer G, Guler R, Murray G, Brombacher F, Brown GD. The role of scavenger receptor B1 in infection with Mycobacterium tuberculosis in a murine model. PLoS ONE. 2009;4.

  • 41.

    Gabriel C, Becher-Deichsel A, Hlavaty J, Mair G, Walter I. The physiological expression of scavenger receptor SR-B1 in canine endometrial and placental epithelial cells and its potential involvement in pathogenesis of pyometra. Theriogenology. 2016;85:1599–609.

    CAS 
    PubMed 

    Google Scholar
     

  • 42.

    Baranova IN, Kurlander R, Bocharov AV, Vishnyakova TG, Chen Z, Remaley AT, et al. Role of human CD36 in bacterial recognition, phagocytosis, and pathogen-induced JNK-mediated signaling. J Immunol. 2008;181:7147–56.

    CAS 
    PubMed 

    Google Scholar
     

  • 43.

    Means TK, Mylonakis E, Tampakakis E, Colvin RA, Seung E, Puckett L, et al. Evolutionarily conserved recognition and innate immunity to fungal pathogens by the scavenger receptors SCARF1 and CD36. J Exp Med. 2009;206:637–53.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 44.

    Hawkes M, Li X, Crockett M, Diassiti A, Finney C, Min-Oo G, et al. CD36 deficiency attenuates experimental mycobacterial infection. BMC Infect Dis. 2010;10:299.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 45.

    Cao D, Luo J, Chen D, Xu H, Shi H, Jing X, et al. CD36 regulates lipopolysaccharide-induced signaling pathways and mediates the internalization of Escherichia coli in cooperation with TLR4 in goat mammary gland epithelial cells. Sci Rep. 2016;6:1–4.

    CAS 

    Google Scholar
     

  • 46.

    Yamayoshi S, Yamashita Y, Li J, Hanagata N, Minowa T, Takemura T, et al. Scavenger receptor B2 is a cellular receptor for enterovirus 71. Nat Med. 2009;15:798.

    CAS 
    PubMed 

    Google Scholar
     

  • 47.

    Yamayoshi S, Iizuka S, Yamashita T, Minagawa H, Mizuta K, Okamoto M, et al. Human SCARB2-dependent infection by coxsackievirus A7, A14, and A16 and enterovirus 71. J Virol. 2012;86:5686–96.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 48.

    Yamayoshi S, Ohka S, Fujii K, Koike S. Functional comparison of SCARB2 and PSGL1 as receptors for enterovirus 71. J Virol. 2013;87:3335–47.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 49.

    Ramet M, Pearson A, Manfruelli P, Li X, Koziel H, Gobel V, et al. Drosophila scavenger receptor CI is a pattern recognition receptor for bacteria. Immunity. 2001;15:1027–38.

    CAS 
    PubMed 

    Google Scholar
     

  • 50.

    Song L, Lee C, Schindler C. Deletion of the murine scavenger receptor CD68. J Lipid Res. 2011;52:1542–50.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 51.

    Amanzada A, Malik IA, Blaschke M, Khan S, Rahman H, Ramadori G, et al. Identification of CD68(+) neutrophil granulocytes in in vitro model of acute inflammation and inflammatory bowel disease. Int J Clin Exp Pathol. 2013;6:561–70.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 52.

    Barros MH, Hauck F, Dreyer JH, Kempkes B, Niedobitek G. Macrophage polarization: an immunohistochemical approach for identifying M1 and M2 macrophages. PLoS ONE. 2013;8:1–11.


    Google Scholar
     

  • 53.

    Papageorgiou IE, Lewen A, Galow LV, Cesetti T, Scheffel J, Regen T, et al. TLR4-activated microglia require IFN-γ to induce severe neuronal dysfunction and death in situ. Proc Natl Acad Sci USA. 2016;113:212–7.

    CAS 
    PubMed 

    Google Scholar
     

  • 54.

    Cha SJ, Park K, Srinivasan P, Schindler CW, Van Rooijen N, Stins M, et al. CD68 acts as a major gateway for malaria sporozoite liver infection. J Exp Med. 2015;212:1391–403.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 55.

    Lin XP, Almqvist N, Telemo E. Human small intestinal epithelial cells constitutively express the key elements for antigen processing and the production of exosomes. Blood Cells Mol Dis. 2005;35:122–8.

    CAS 
    PubMed 

    Google Scholar
     

  • 56.

    Wu Z, Sawamura T, Kurdowska AK, Ji HL, Idell S, Fu J. LOX-1 deletion improves neutrophil responses, enhances bacterial clearance, and reduces lung injury in a murine polymicrobial sepsis model. Infect Immun. 2011;79:2865–70.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 57.

    Tanigawa H, Miura SI, Matsuo Y, Fujino M, Sawamura T, Saku K. Dominant-negative lox-1 blocks homodimerization of wild-type Lox-1–induced cell proliferation through extracellular signal regulated kinase 1/2 activation. Hypertension. 2006;48:294–300.

    CAS 
    PubMed 

    Google Scholar
     

  • 58.

    Khaidakov M, Wang X, Mehta JL. Potential involvement of LOX-1 in functional consequences of endothelial senescence. PLoS ONE. 2011;6.

  • 59.

    Shimaoka T, Kume N, Minami M, Hayashida K, Sawamura T, Kita T, et al. LOX-1 supports adhesion of Gram-positive and Gram-negative bacteria. J Immunol. 2001;166:5108–14.

    CAS 
    PubMed 

    Google Scholar
     

  • 60.

    Jeannin P, Bottazzi B, Sironi M, Doni A, Rusnati M, Presta M, et al. Complexity and complementarity of outer membrane protein A recognition by cellular and humoral innate immunity receptors. Immunity. 2005;22:551–60.

    CAS 
    PubMed 

    Google Scholar
     

  • 61.

    Herre J, Willment JA, Gordon S, Brown GD. The role of Dectin-1 in antifungal immunity. Crit Rev Immunol. 2004;24.

  • 62.

    Drummond RA, Brown GD. The role of Dectin-1 in the host defence against fungal infections. Curr Opin Microbiol. 2011;14:392–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 63.

    Reid DM, Montoya M, Taylor PR, Borrow P, Gordon S, Brown GD, Wong SY. Expression of the β glucan receptor, Dectin 1, on murine leukocytes in situ correlates with its function in pathogen recognition and reveals potential roles in leukocyte interactions. J Leukoc Biol. 2004;76:86–94.

    CAS 
    PubMed 

    Google Scholar
     

  • 64.

    Chen SM, Shen H, Zhang T, Huang X, Liu XQ, Guo SY, et al. Dectin-1 plays an important role in host defense against systemic Candida glabrata infection. Virulence. 2017;8:1643–56.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 65.

    Azad AK, Rajaram MV, Schlesinger LS. Exploitation of the macrophage mannose receptor (CD206) in infectious disease diagnostics and therapeutics. J Cytol Mol Biol. 2014;1(1).

  • 66.

    Wollenberg A, Oppel T, Schottdorf EM, Günther S, Moderer M, Mommaas M. Expression and function of the mannose receptor CD206 on epidermal dendritic cells in inflammatory skin diseases. J Invest Dermatol. 2002;118:327–34.

    CAS 
    PubMed 

    Google Scholar
     

  • 67.

    Kaku Y, Imaoka H, Morimatsu Y, Komohara Y, Ohnishi K, Oda H, et al. Overexpression of CD163, CD204 and CD206 on alveolar macrophages in the lungs of patients with severe chronic obstructive pulmonary disease. PLoS ONE. 2014;9.

  • 68.

    Dai K, Huang L, Sun X, Yang L, Gong Z. Hepatic CD206 positive macrophages express amphiregulin to promote the immunosuppressive activity of regulatory T cells in HBV infection. J Leukoc Biol. 2015;98:1071–80.

    CAS 
    PubMed 

    Google Scholar
     

  • 69.

    Guy CS, Rankin SL, Michalak TI. Hepatocyte cytotoxicity is facilitated by asialoglycoprotein receptor. Hepatology. 2011;54:1043–50.

    CAS 
    PubMed 

    Google Scholar
     

  • 70.

    McVicker BL, Thiele GM, Casey CA, Osna NA, Tuma DJ. Susceptibility to T cell-mediated liver injury is enhanced in asialoglycoprotein receptor-deficient mice. Int Immunopharmacol. 2013;16:17–26.

    CAS 
    PubMed 

    Google Scholar
     

  • 71.

    Zhang L, Tian Y, Wen Z, Zhang F, Qi Y, Huang W, et al. Asialoglycoprotein receptor facilitates infection of PLC/PRF/5 cells by HEV through interaction with ORF2. J Med Virol. 2016;88:2186–95.

    CAS 
    PubMed 

    Google Scholar
     

  • 72.

    Beauvillain C, Meloni F, Sirard JC, Blanchard S, Jarry U, Scotet M, et al. The scavenger receptors SRA-1 and SREC-I cooperate with TLR2 in the recognition of the hepatitis C virus non-structural protein 3 by dendritic cells. J Hepatol. 2010;52:644–51.

    CAS 
    PubMed 

    Google Scholar
     

  • 73.

    Murshid A, Gong J, Prince T, Borges TJ, Calderwood SK. Scavenger receptor SREC-I mediated entry of TLR4 into lipid microdomains and triggered inflammatory cytokine release in RAW 264.7 cells upon LPS activation. PLoS ONE. 2015;10.

  • 74.

    Ramirez-Ortiz ZG, Pendergraft WF III, Prasad A, Byrne MH, Iram T, Blanchette CJ, et al. The scavenger receptor SCARF1 mediates the clearance of apoptotic cells and prevents autoimmunity. Nat Immunol. 2013;14:917.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 75.

    Ishii J, Adachi H, Aoki J, Koizumi H, Tomita S, Suzuki T, et al. SREC-II, a new member of the scavenger receptor type F family, trans-interacts with SREC-I through its extracellular domain. J Biol Chem. 2002;277:39696–702.

    CAS 
    PubMed 

    Google Scholar
     

  • 76.

    Iram T, Ramirez-Ortiz Z, Byrne MH, Coleman UA, Kingery ND, Means TK, et al. Megf10 is a receptor for C1Q that mediates clearance of apoptotic cells by astrocytes. J Neurosci. 2016;36:5185–92.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 77.

    Morizawa YM, Hirayama Y, Ohno N, Shibata S, Shigetomi E, Sui Y, et al. Reactive astrocytes function as phagocytes after brain ischemia via ABCA1-mediated pathway. Nat Commun. 2017;8(1):1–5.


    Google Scholar
     

  • 78.

    Ziegenfuss JS, Biswas R, Avery MA, Hong K, Sheehan AE, Yeung YG, et al. Draper-dependent glial phagocytic activity is mediated by Src and Syk family kinase signalling. Nature. 2008;453:935–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 79.

    Zhou Z, Caron E, Hartwieg E, Hall A, Horvitz HR. The C. elegans PH domain protein CED-12 regulates cytoskeletal reorganization via a Rho/Rac GTPase signaling pathway. Developmental cell. 2001;1(4):477–89.

  • 80.

    Chung WS, Clarke LE, Wang GX, Stafford BK, Sher A, Chakraborty C, et al. Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways. Nature. 2013;504:394–400.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 81.

    Tabata S, Kadowaki N, Kitawaki T, Shimaoka T, Yonehara S, Yoshie O, et al. Distribution and kinetics of SR-PSOX/CXCL16 and CXCR6 expression on human dendritic cell subsets and CD4+ T cells. J Leukoc Biol. 2005;77:777–86.

    CAS 
    PubMed 

    Google Scholar
     

  • 82.

    Hundhausen C, Schulte A, Schulz B, Andrzejewski MG, Schwarz N, Von Hundelshausen P, et al. Regulated shedding of transmembrane chemokines by the disintegrin and metalloproteinase 10 facilitates detachment of adherent leukocytes. J Immunol. 2007;178:8064–72.

    CAS 
    PubMed 

    Google Scholar
     

  • 83.

    Uza N, Nakase H, Yamamoto S, Yoshino T, Takeda Y, Ueno S, et al. SR-PSOX/CXCL16 plays a critical role in the progression of colonic inflammation. Gut. 2011;60:1494–505.

    CAS 
    PubMed 

    Google Scholar
     

  • 84.

    Shimaoka T, Seino KI, Kume N, Minami M, Nishime C, Suematsu M, et al. Critical role for CXC chemokine ligand 16 (SR-PSOX) in Th1 response mediated by NKT cells. J Immunol. 2007;179:8172–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 85.

    Shimaoka T, Nakayama T, Fukumoto N, Kume N, Takahashi S, Yamaguchi J, et al. Cell surface anchored SR PSOX/CXC chemokine ligand 16 mediates firm adhesion of CXC chemokine receptor 6 expressing cells. J Leukoc Biol. 2004;75:267–74.

    CAS 
    PubMed 

    Google Scholar
     

  • 86.

    Hudspeth K, Donadon M, Cimino M, Pontarini E, Tentorio P, Preti M, et al. Human liver-resident CD56bright/CD16neg NK cells are retained within hepatic sinusoids via the engagement of CCR5 and CXCR6 pathways. J Autoimmun. 2016;66:40–50.

    CAS 
    PubMed 

    Google Scholar
     

  • 87.

    Irjala H, Elima K, Johansson EL, Merinen M, Kontula K, Alanen K, et al. The same endothelial receptor controls lymphocyte traffic both in vascular and lymphatic vessels. Eur J Immunol. 2003;33:815–24.

    CAS 
    PubMed 

    Google Scholar
     

  • 88.

    Karikoski M, Irjala H, Maksimow M, Miiluniemi M, Granfors K, Hernesniemi S, et al. Clever-1/Stabilin-1 regulates lymphocyte migration within lymphatics and leukocyte entrance to sites of inflammation. Eur J Immunol. 2009;39:3477–87.

    CAS 
    PubMed 

    Google Scholar
     

  • 89.

    Adachi H, Tsujimoto M. FEEL-1, a novel scavenger receptor with in vitro bacteria-binding and angiogenesis-modulating activities. J Biol Chem. 2002;277:34264–70.

    CAS 
    PubMed 

    Google Scholar
     

  • 90.

    Jung MY, Park SY, Kim IS. Stabilin 2 is involved in lymphocyte adhesion to the hepatic sinusoidal endothelium via the interaction with αMβ2 integrin. J Leukoc Biol. 2007;82:1156–65.

    CAS 
    PubMed 

    Google Scholar
     

  • 91.

    Kim S, Bae D-J, Hong M, Park S-Y, Kim I-S. The conserved histidine in epidermal growth factor-like domains of stabilin-2 modulates pH-dependent recognition of phosphatidylserine in apoptotic cells. Int J Biochem Cell Biol. 2010;42:1154–63.

    CAS 
    PubMed 

    Google Scholar
     

  • 92.

    Buechler C, Ritter M, Orsó E, Langmann T, Klucken J, Schmitz G. Regulation of scavenger receptor CD163 expression in human monocytes and macrophages by pro and antiinflammatory stimuli. J Leukoc Biol. 2000;67:97–103.

    CAS 
    PubMed 

    Google Scholar
     

  • 93.

    Etzerodt A, Moestrup SK. CD163 and inflammation: biological, diagnostic, and therapeutic aspects. Antioxid Redox Signal. 2013;18:2352–63.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 94.

    Canton J, Neculai D, Grinstein S. Scavenger receptors in homeostasis and immunity. Nat Rev Immunol. 2013;13:621–34.

    CAS 
    PubMed 

    Google Scholar
     

  • 95.

    Philippidis P, Mason JC, Evans BJ, Nadra I, Taylor KM, Haskard DO, et al. Hemoglobin scavenger receptor CD163 mediates interleukin-10 release and heme oxygenase-1 synthesis: antiinflammatory monocyte-macrophage responses in vitro, in resolving skin blisters in vivo, and after cardiopulmonary bypass surgery. Circ Res. 2004;94:119–26.

    CAS 
    PubMed 

    Google Scholar
     

  • 96.

    Moeller JB, Nielsen MJ, Reichhardt MP, Schlosser A, Sorensen GL, Nielsen O, et al. CD163-L1 is an endocytic macrophage protein strongly regulated by mediators in the inflammatory response. J Immunol. 2012;188:2399–409.

    CAS 
    PubMed 

    Google Scholar
     

  • 97.

    González-Domínguez É, Samaniego R, Flores-Sevilla JL, Campos-Campos SF, Gómez-Campos G, Salas A, et al. CD163L1 and CLEC5A discriminate subsets of human resident and inflammatory macrophages in vivo. J Leukoc Biol. 2015;98:453–66.

    PubMed 

    Google Scholar
     

  • 98.

    Holm D, Fink DR, Steffensen MA, Schlosser A, Nielsen O, Moeller JB, et al. Characterization of a novel human scavenger receptor cysteine-rich molecule SCART1 expressed by lymphocytes. Immunobiology. 2013;218:408–17.

    CAS 
    PubMed 

    Google Scholar
     

  • 99.

    Telfer JC, Baldwin CL. Baldwin. Bovine gamma delta T cells and the function of gamma delta T cell specific WC1 co-receptors. Cell Immunol. 2015;296:76–86.

  • 100.

    Vera J, Fenutría R, Cañadas O, Figueras M, Mota R, Sarrias MR, et al. The CD5 ectodomain interacts with conserved fungal cell wall components and protects from zymosan-induced septic shock-like syndrome. Proc Natl Acad Sci. 2009;106:1506–11.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 101.

    Braun M, Müller B, Ter Meer D, Raffegerst S, Simm B, Wilde S, et al. The CD6 scavenger receptor is differentially expressed on a CD56dim natural killer cell subpopulation and contributes to natural killer-derived cytokine and chemokine secretion. J Innate Immun. 2011;3:420–34.

    CAS 
    PubMed 

    Google Scholar
     

  • 102.

    Sarrias MR, Farnós M, Mota R, Sánchez-Barbero F, Ibáñez A, Gimferrer I, et al. CD6 binds to pathogen-associated molecular patterns and protects from LPS-induced septic shock. Proc Natl Acad Sci. 2007;104:11724–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 103.

    Ibrahim ZA, Armour CL, Phipps S, Sukkar MB. RAGE and TLRs: relatives, friends or neighbours? Mol Immunol. 2013;56:739–44.

    CAS 
    PubMed 

    Google Scholar
     

  • 104.

    Sakaguchi M, Murata H, Yamamoto KI, Ono T, Sakaguchi Y, Motoyama A, et al. TIRAP, an adaptor protein for TLR2/4, transduces a signal from RAGE phosphorylated upon ligand binding. PloS One. 2011;6.

  • 105.

    Qin YH, Dai SM, Tang GS, Zhang J, Ren D, Wang ZW, et al. HMGB1 enhances the proinflammatory activity of lipopolysaccharide by promoting the phosphorylation of MAPK p38 through receptor for advanced glycation end products. J Immunol. 2009;183:6244–50.

    CAS 
    PubMed 

    Google Scholar
     

  • 106.

    Xu D, Young J, Song D, Esko JD. Heparan sulfate is essential for high mobility group protein 1 (HMGB1) signaling by the receptor for advanced glycation end products (RAGE). J Biol Chem. 2011;286:41736–44.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 107.

    Ghavami S, Rashedi I, Dattilo BM, Eshraghi M, Chazin WJ, Hashemi M, et al. S100A8/A9 at low concentration promotes tumor cell growth via RAGE ligation and MAP kinase-dependent pathway. J Leukoc Biol. 2008;83:1484–92.

    CAS 
    PubMed 

    Google Scholar
     

  • 108.

    Schelbergen RF, Blom AB, van den Bosch MH, Slöetjes A, Abdollahi-Roodsaz S, Schreurs BW, et al. Alarmins S100A8 and S100A9 elicit a catabolic effect in human osteoarthritic chondrocytes that is dependent on Toll-like receptor 4. Arthritis Rheum. 2012;64:1477–87.

    CAS 
    PubMed 

    Google Scholar
     

  • 109.

    Ichikawa M, Williams R, Wang L, Vogl T, Srikrishna G. S100A8/A9 activate key genes and pathways in colon tumor progression. Mol Cancer Res. 2011;9:133–48.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 110.

    Yamamoto Y, Harashima A, Saito H, Tsuneyama K, Munesue S, Motoyoshi S, et al. Septic shock is associated with receptor for advanced glycation end products ligation of LPS. J Immunol. 2011;186:3248–57.

    CAS 
    PubMed 

    Google Scholar
     

  • 111.

    Bangert A, Andrassy M, Müller AM, Bockstahler M, Fischer A, Volz CH, et al. Critical role of RAGE and HMGB1 in inflammatory heart disease. Proc Natl Acad Sci. 2016;113:155–64.


    Google Scholar
     

  • 112.

    Nakamura H, Suenaga N, Taniwaki K, Matsuki H, Yonezawa K, Fujii M, et al. Constitutive and induced CD44 shedding by ADAM-like proteases and membrane-type 1 matrix metalloproteinase. Cancer Res. 2004;64:876–82.

    CAS 
    PubMed 

    Google Scholar
     

  • 113.

    Liang J, Jiang D, Griffith J, Yu S, Fan J, Zhao X, et al. CD44 is a negative regulator of acute pulmonary inflammation and lipopolysaccharide-TLR signaling in mouse macrophages. J Immunol. 2007;178:2469–75.

    CAS 
    PubMed 

    Google Scholar
     

  • 114.

    Kawana H, Karaki H, Higashi M, Miyazaki M, Hilberg F, Kitagawa M, et al. CD44 suppresses TLR-mediated inflammation. J Immunol. 2008;180:4235–45.

    CAS 
    PubMed 

    Google Scholar
     

  • 115.

    Muto J, Yamasaki K, Taylor KR, Gallo RL. Engagement of CD44 by hyaluronan suppresses TLR4 signaling and the septic response to LPS. Mol Immunol. 2009;47:449–56.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 116.

    Qadri M, Almadani S, Jay GD, Elsaid KA. Role of CD44 in regulating TLR2 activation of human macrophages and downstream expression of proinflammatory cytokines. J Immunol. 2018;200:758–67.

    CAS 
    PubMed 

    Google Scholar
     

  • 117.

    Schommer NN, Muto J, Nizet V, Gallo RL. Hyaluronan breakdown contributes to immune defense against group A Streptococcus. J Biol Chem. 2014;289:26914–21.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 118.

    Khurana SS, Riehl TE, Moore BD, Fassan M, Rugge M, Romero-Gallo J, et al. The hyaluronic acid receptor CD44 coordinates normal and metaplastic gastric epithelial progenitor cell proliferation. J Biol Chem. 2013;288:16085–97.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 119.

    van der Windt GJ, Florquin S, De Vos AF, Van’t Veer C, Queiroz KC, Liang J, et al. CD44 deficiency is associated with increased bacterial clearance but enhanced lung inflammation during Gram-negative pneumonia. Am J Pathol. 2010;177:2483–94.

  • 120.

    Li P, Fujimoto K, Bourguingnon L, Yukl S, Deeks S, Wong JK. Exogenous and endogenous hyaluronic acid reduces HIV infection of CD4(+) T cells. Immunol Cell Biol. 2014;92:770–80.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 121.

    Abe T, Fukuhara T, Wen X, Ninomiya A, Moriishi K, Maehara Y, et al. CD44 participates in IP-10 induction in cells in which hepatitis C virus RNA is replicating, through an interaction with toll-like receptor 2 and hyaluronan. J Virol. 2012;86:6159–70.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 122.

    Presicce P, Giannelli S, Taddeo A, Villa ML, Della BS. Human defensins activate monocyte-derived dendritic cells, promote the production of proinflammatory cytokines, and up-regulate the surface expression of CD91. J Leukoc Biol. 2009;86(4):941–8.

    CAS 
    PubMed 

    Google Scholar
     

  • 123.

    Pawaria S, Binder RJ. CD91-dependent programming of T-helper cell responses following heat shock protein immunization. Nat Commun. 2011;2:521.

    PubMed 

    Google Scholar
     

  • 124.

    Basu S, Binder RJ, Suto R, Anderson KM, Srivastava PK. Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-kappa B pathway. Int Immunol. 2000;12:1539–46.

    CAS 
    PubMed 

    Google Scholar
     

  • 125.

    Sedlackova L, Nguyen TT, Zlacka D, Sosna A, Hromadnikova I. Cell surface and relative mRNA expression of heat shock protein 70 in human synovial cells. Autoimmunity. 2009;42:17–24.

    CAS 
    PubMed 

    Google Scholar
     

  • 126.

    Bartolome F, Antequera D, Tavares E, Pascual C, Maldonado R, Camins A, et al. Obesity and neuroinflammatory phenotype in mice lacking endothelial megalin. J Neuroinflamm. 2017;14:26.


    Google Scholar
     

  • 127.

    Donoghue M, Hsieh F, Baronas E, Godbout K, Gosselin M, Stagliano N, et al. Acton, A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1–9. Circ Res. 2000;87:1–9.


    Google Scholar
     

  • 128.

    Warner FJ, Smith AI, Hooper NM, Turner AJ. Angiotensin- converting enzyme-2: a molecular and cellular perspective. Cell Mol Life Sci. 2004;61:2704–13.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 129.

    Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan B, et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus—induced lung injury. Nat Med. 2005;11:875–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 130.

    Yang XH, Deng W, Tong Z, Liu YX, Zhang LF, Zhu H, et al. Mice transgenic for human angiotensin-converting enzyme 2 provide a model for SARS coronavirus infection. Comp Med. 2007;57(5):450–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 131.

    Xu X, Chen P, Wang J, Feng J, Zhou H, Li X, et al. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its Spike protein for risk of human transmission. Sci China Life Sci. 2020;63:457–60.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 132.

    Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor recognition by novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS. J Virol. 2020;94.

  • 133.

    Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579:270–3.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 134.

    Yu L, Yuan K, Phuong HT, Park BM, Kim SH. Angiotensin-(1–5), an active mediator of renin-angiotensin system, stimulates ANP secretion via Mas receptor. Peptides. 2016;86:33–41.

    CAS 
    PubMed 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)