• 1.

    Wallace DC, Mitochondrial DNA. Variation in human radiation and disease. Cell. 2015;163:33–8.

    CAS 
    Article 

    Google Scholar
     

  • 2.

    Li H, Slone J, Fei L, Huang T. Mitochondrial DNA variants and common diseases: a mathematical model for the diversity of age-related mtDNA mutations. Cells. 2019;8:608.

    CAS 
    Article 

    Google Scholar
     

  • 3.

    Tuppen HAL, Blakely EL, Turnbull DM, Taylor RW. Mitochondrial DNA mutations and human disease. Biochim Biophys Acta – Bioenerg. 2010;1797:113–28.

    CAS 
    Article 

    Google Scholar
     

  • 4.

    ConfirmedMutations < MITOMAP < Foswiki. https://www.mitomap.org/foswiki/bin/view/MITOMAP/ConfirmedMutations. Accessed 10 Oct 2021.

  • 5.

    Elliott HR, Samuels DC, Eden JA, Relton CL, Chinnery PF. Pathogenic mitochondrial DNA mutations are common in the general population. Am J Hum Genet. 2008;83:254–60.

    CAS 
    Article 

    Google Scholar
     

  • 6.

    Boelsterli UA, Lim PLK. Mitochondrial abnormalities—a link to idiosyncratic drug hepatotoxicity? Toxicol Appl Pharmacol. 2007;220:92–107. https://doi.org/10.1016/j.taap.2006.12.013.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 7.

    Penman SL, Carter AS, Chadwick AE. Investigating the importance of individual mitochondrial genotype in susceptibility to drug-induced toxicity. Biochem Soc Trans. 2020;48:787–97. https://doi.org/10.1042/BST20190233.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 8.

    Yuan Y, Ju YS, Kim Y, Li J, Wang Y, Yoon CJ, et al. Comprehensive molecular characterization of mitochondrial genomes in human cancers. Nat Genet. 2020;52:342–52. https://doi.org/10.1038/s41588-019-0557-x.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 9.

    Zong WX, Rabinowitz JD, White E. Mitochondria and cancer. Mol Cell. 2016;61:667–76. https://doi.org/10.1016/j.molcel.2016.02.011.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 10.

    Hulgan T, Haas DW, Haines JL, Ritchie MD, Robbins GK, Shafer RW, et al. Mitochondrial haplogroups and peripheral neuropathy during antiretroviral therapy: an adult AIDS clinical trials group study. AIDS. 2005;19:1341–9. https://doi.org/10.1097/01.aids.0000180786.02930.a1.

    Article 
    PubMed 

    Google Scholar
     

  • 11.

    Canter JA, Robbins GK, Selph D, Clifford DB, Kallianpur AR, Shafer R, et al. African mitochondrial DNA subhaplogroups and peripheral neuropathy during antiretroviral therapy. J Infect Dis. 2010;201:1703–7. https://doi.org/10.1086/652419.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 12.

    Hendrickson SL, Kingsley LA, Ruiz-Pesini E, Poole JC, Jacobson LP, Palella FJ, et al. Mitochondrial DNA haplogroups influence lipoatrophy after highly active antiretroviral therapy. J Acquir Immune Defic Syndr. 2009;51:111–6. https://doi.org/10.1097/QAI.0b013e3181a324d6.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 13.

    Micheloud D, Berenguer J, Guzmán-Fulgencio M, Campos Y, García-Álvarez M, Catalán P, et al. European mitochondrial DNA haplogroups and metabolic disorders in HIV/HCV-coinfected patients on highly active antiretroviral therapy. J Acquir Immune Defic Syndr. 2011;58:371–8. https://doi.org/10.1097/QAI.0b013e31822d2629.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 14.

    Hulgan T, Haubrich R, Riddler SA, Tebas P, Ritchie MD, McComsey GA, et al. European mitochondrial DNA haplogroups and metabolic changes during antiretroviral therapy in AIDS Clinical Trials Group Study A5142. AIDS. 2011;25:37–47. https://doi.org/10.1097/QAD.0b013e32833f9d02.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 15.

    Hulgan T, Stein JH, Cotter BR, Murdock DG, Ritchie MD, Dube MP, et al. Mitochondrial DNA variation and changes in adiponectin and endothelial function in HIV-infected adults after antiretroviral therapy initiation. AIDS Res Hum Retroviruses. 2013;29:1293–9. https://doi.org/10.1089/aid.2013.0079.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Pacheu-Grau D, Gómez-Durá A, López-Pérez MJ, Montoya J, Ruiz-Pesini E. Mitochondrial pharmacogenomics: barcode for antibiotic therapy. Drug Discov Today. 2010. https://doi.org/10.1016/j.drudis.2009.10.008.

    Article 
    PubMed 

    Google Scholar
     

  • 17.

    Stewart JB, Chinnery PF. The dynamics of mitochondrial DNA heteroplasmy: implications for human health and disease. Nat Rev Genet. 2015;16:530–42. https://doi.org/10.1038/nrg3966.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 18.

    Maruyama S, Komuro T, Izawa H, Tsutsumi H. Analysis of human mitochondrial DNA polymorphisms in the japanese population. Biochem Genet. 2013;51:33–70.

    CAS 
    Article 

    Google Scholar
     

  • 19.

    Yamamoto K, Sakaue S, Matsuda K, Murakami Y, Kamatani Y, Ozono K, et al. Genetic and phenotypic landscape of the mitochondrial genome in the Japanese population. Commun Biol. 2020;3:1–11. https://doi.org/10.1038/s42003-020-0812-9.

    CAS 
    Article 

    Google Scholar
     

  • 20.

    Duong NT, Macholdt E, Ton ND, Arias L, Schröder R, Van Phong N, et al. Complete human mtDNA genome sequences from Vietnam and the phylogeography of Mainland Southeast Asia. Sci Rep. 2018;8:11651. https://doi.org/10.1038/s41598-018-29989-0.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 21.

    Stoljarova M, King JL, Takahashi M, Aaspõllu A, Budowle B. Whole mitochondrial genome genetic diversity in an Estonian population sample. Int J Legal Med. 2016;130:67–71.

    Article 

    Google Scholar
     

  • 22.

    Just RS, Diegoli TM, Saunier JL, Irwin JA, Parsons TJ. Complete mitochondrial genome sequences for 265 African American and U.S. “Hispanic” individuals. Forensic Sci Int Genet. 2008;2:e45–8.

    Article 

    Google Scholar
     

  • 23.

    Jeon S, Jeon S, Bhak Y, Bhak Y, Bhak Y, Choi Y, et al. Korean Genome Project: 1094 Korean personal genomes with clinical information. Sci Adv. 2020;6:eaaz7835. https://doi.org/10.1126/sciadv.aaz7835.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    Park S, Cho S, Seo HJ, Lee JH, Kim MY, Lee SD. Entire Mitochondrial DNA Sequencing on Massively Parallel Sequencing for the Korean Population. J Korean Med Sci. 2017;32(4):587. https://doi.org/10.3346/jkms.2017.32.4.587.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 25.

    Zhou Y, Guo F, Yu J, Liu F, Zhao J, Shen H, et al. Strategies for complete mitochondrial genome sequencing on Ion Torrent PGMTM platform in forensic sciences. Forensic Sci Int Genet. 2016;22:11–21.

    CAS 
    Article 

    Google Scholar
     

  • 26.

    Gould MP, Bosworth CM, McMahon S, Grandhi S, Grimerg BT, La Framboise T. PCR-free enrichment of mitochondrial DNA from human blood and cell lines for high quality next-generation DNA sequencing. PLoS ONE. 2015;10:1–13.


    Google Scholar
     

  • 27.

    McElhoe JA, Holland MM, Makova KD, Su MSW, Paul IM, Baker CH, et al. Development and assessment of an optimized next-generation DNA sequencing approach for the mtgenome using the Illumina MiSeq. Forensic Sci Int Genet. 2014;13:20–9.

    CAS 
    Article 

    Google Scholar
     

  • 28.

    Levin BC, Hancock DK, Holland KA, Cheng H, Richie KL. Standard Reference Materials ® Human Mitochondrial DNA-Amplification and Sequencing Standard Reference Materials-SRM 2392 and SRM 2392-I.

  • 29.

    INSTRUCTION MANUAL NEBNext ® Ultra TM II DNA Library Prep Kit for Illumina ®.

  • 30.

    Trivedi UH, Cézard T, Bridgett S, Montazam A, Nichols J, Blaxter M, et al. Quality control of next-generation sequencing data without a reference. Front Genet. 2014. https://doi.org/10.3389/fgene.2014.00111.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 31.

    Ewels P, Magnusson M, Lundin S, Käller M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics. 2016;32:3047–8. https://doi.org/10.1093/bioinformatics/btw354.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 32.

    Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20. https://doi.org/10.1093/bioinformatics/btu170.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Auton A, Abecasis GR, Altshuler DM, Durbin RM, Bentley DR, Chakravarti A, et al. A global reference for human genetic variation. Nature. 2015;526:68–74. https://doi.org/10.1038/nature15393.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 34.

    Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics. 2009;25:1754–60. https://doi.org/10.1093/bioinformatics/btp324.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 35.

    Okonechnikov K, Conesa A, García-Alcalde F. Qualimap 2: advanced multi-sample quality control for high-throughput sequencing data. Bioinformatics. 2016;32:292–4. https://doi.org/10.1093/bioinformatics/btv566.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 36.

    GATK Best Practices Mitochondrial Analysis—GATK. https://gatk.broadinstitute.org/hc/en-us/community/posts/360056028651-GATK-Best-Practices-Mitochondrial-Analysis. Accessed 5 May 2021.

  • 37.

    Preste R, Clima R, Attimonelli M. Human mitochondrial variant annotation with HmtNote. bioRxiv. 2019. https://doi.org/10.1101/600619.

    Article 

    Google Scholar
     

  • 38.

    Preste R, Vitale O, Clima R, Gasparre G, Attimonelli M. Hmtvar: a new resource for human mitochondrial variations and pathogenicity data. Nucleic Acids Res. 2019;47:D1202–10. https://doi.org/10.1093/nar/gky1024.

    Article 
    PubMed 

    Google Scholar
     

  • 39.

    Weissensteiner H, Pacher D, Kloss-Brandstätter A, Forer L, Specht G, Bandelt HJ, et al. HaploGrep 2: mitochondrial haplogroup classification in the era of high-throughput sequencing. Nucleic Acids Res. 2016;44:W58-63. https://doi.org/10.1093/nar/gkw233.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 40.

    Kiesler K. Sequencing and standards for characterization of the mitochondrial genome. 2018.

  • 41.

    Lanave C, Tommasi S, Preparata G, Saccone C. Transition and transversion rate in the evolution of animal mitochondrial DNA. BioSystems. 1986;19:273–83.

    CAS 
    Article 

    Google Scholar
     

  • 42.

    Carver T, Thomson N, Bleasby A, Berriman M, Parkhill J. DNAPlotter: circular and linear interactive genome visualization. Bioinformatics. 2009;25(1):119–20. https://doi.org/10.1093/bioinformatics/btn578.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 43.

    Kim J, Weber JA, Jho S, Jang J, Jun J, Cho YS, et al. KoVariome: Korean National Standard Reference Variome database of whole genomes with comprehensive SNV, indel, CNV, and SV analyses. Sci Rep. 2018. https://doi.org/10.1038/s41598-018-23837-x.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 44.

    TopVariants < MITOMAP < Foswiki. https://www.mitomap.org/foswiki/bin/view/MITOMAP/TopVariants. Accessed 6 May 2021.

  • 45.

    SearchAllele < Main < Foswiki. https://www.mitomap.org/foswiki/bin/view/Main/SearchAllele. Accessed 6 May 2021.

  • 46.

    Origin and evolution of Native American mtDNA variation: a reappraisal—PubMed. https://pubmed.ncbi.nlm.nih.gov/8808611/. Accessed 21 June 2021.

  • 47.

    Tanaka M, Cabrera VM, González AM, Larruga JM, Takeyasu T, Fuku N, et al. Mitochondrial genome variation in Eastern Asia and the peopling of Japan. Genome Res. 2004;14(10A):1832–50. https://doi.org/10.1101/gr.2286304.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 48.

    Mutect2—GATK. https://gatk.broadinstitute.org/hc/en-us/articles/360042477952-Mutect2. Accessed 30 April 2021.

  • 49.

    rs267606617 RefSNP Report—dbSNP—NCBI. https://www.ncbi.nlm.nih.gov/snp/rs267606617. Accessed 26 May 2021.

  • 50.

    rs28358571 RefSNP Report—dbSNP—NCBI. https://www.ncbi.nlm.nih.gov/snp/rs28358571. Accessed 26 May 2021.

  • 51.

    McDermott JH, Wolf J, Hoshitsuki K, Huddart R, Caudle KE, Whirl-Carrillo M, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for the use of aminoglycosides based on MT-RNR1 genotype. Clin Pharmacol Ther. 2021. https://doi.org/10.1002/cpt.2309.

    Article 
    PubMed 

    Google Scholar
     

  • 52.

    Narita M, Tsuji BT, Yu VL. Linezolid-associated peripheral and optic neuropathy, lactic acidosis, and serotonin syndrome. Pharmacotherapy. 2007;27:1189–97.

    CAS 
    Article 

    Google Scholar
     

  • 53.

    rs3928306 RefSNP Report—dbSNP—NCBI. https://www.ncbi.nlm.nih.gov/snp/rs3928306. Accessed 6 May 2021.

  • 54.

    Garrabou G, Soriano À, Pinós T, Casanova-Mollà J, Pacheu-Grau D, Morén C, et al. Influence of mitochondrial genetics on the mitochondrial toxicity of linezolid in blood cells and skin nerve fibers. Antimicrob Agents Chemother. 2017;61:e00542-17.

    Article 

    Google Scholar
     

  • 55.

    Greenberg BD, Newbold JE, Sugino A. Intraspecific nucleotide sequence variability surrounding the origin of replication in human mitochondrial DNA. Gene. 1983;21:33–49.

    CAS 
    Article 

    Google Scholar
     

  • 56.

    Park KS, Chan JC, Chuang LM, Suzuki S, Araki E, Nanjo K, et al. A mitochondrial DNA variant at position 16189 is associated with type 2 diabetes mellitus in Asians. Diabetologia. 2008;51:602–8. https://doi.org/10.1007/s00125-008-0933-z.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 57.

    Kumar B, Bhat ZI, Bansal S, Saini S, Naseem A, Wahabi K, et al. Association of mitochondrial copy number variation and T16189C polymorphism with colorectal cancer in North Indian population. Tumor Biol. 2017. https://doi.org/10.1177/1010428317740296.

    Article 

    Google Scholar
     

  • 58.

    Saldaña-Rivera E, Careaga-Castilla MJ, Olvera-Cárdenas GD, Pérez-Soto E, Sánchez-Monroy V. Mitochondrial T16189C polymorphism is associated with metabolic syndrome in the Mexican population. Dis Markers. 2018. https://doi.org/10.1155/2018/3981315.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 59.

    Jamali L, Banoei MM, Khalili E, Dadgar S, Houshmand M. Association of genetic variations in the mitochondrial d-loop with β-thalassemia. Mitochondrial DNA Part A DNA Mapp Seq Anal. 2016;27:1–4. https://doi.org/10.3109/19401736.2014.958730.

    CAS 
    Article 

    Google Scholar
     

  • 60.

    Liou CW, Lin TK, Chen JB, Tiao MM, Weng SW, Chen SD, et al. Association between a common mitochondrial DNA D-loop polycytosine variant and alteration of mitochondrial copy number in human peripheral blood cells. J Med Genet. 2010;47:723–8. https://doi.org/10.1136/jmg.2010.077552.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 61.

    Ramachandran A, Visschers RGJ, Duan L, Akakpo JY, Jaeschke H. Mitochondrial dysfunction as a mechanism of drug-induced hepatotoxicity: current understanding and future perspectives. J Clin Transl Res. 2018;4:75. https://doi.org/10.18053/JCTRES.04.201801.005.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 62.

    He Y, Wu J, Dressman DC, Iacobuzio-Donahue C, Markowitz SD, Velculescu VE, et al. Heteroplasmic mitochondrial DNA mutations in normal and tumour cells. Nature. 2010;464:610–4. https://doi.org/10.1038/nature08802.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 63.

    Hauswirth WW, Clayton DA. Length heterogeneity of a conserved displacement-loop sequence in human mitochondrial DNA. Nucleic Acids Res. 1985;13:8093–104. https://doi.org/10.1093/nar/13.22.8093.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 64.

    Howell N, Smejkal CB. Persistent heteroplasmy of a mutation in the human mtDNA control region: hypermutation as an apparent consequence of simple-repeat expansion/contraction. Am J Hum Genet. 2000;66:1589–98. https://doi.org/10.1086/302910.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 65.

    Zhao H, Shen J, Medico L, Platek M, Ambrosone CB. Length heteroplasmies in human mitochondrial DNA control regions and breast cancer risk. Int J Mol Epidemiol Genet. 2010;1:184–92.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 66.

    Avital G, Buchshtav M, Zhidkov I, Tuval J, Dadon S, Rubin E, et al. Mitochondrial DNA heteroplasmy in diabetes and normal adults: role of acquired and inherited mutational patterns in twins. Hum Mol Genet. 2012;21:4214. https://doi.org/10.1093/HMG/DDS245.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 67.

    Anderson S, Bankier AT, Barrell BG, De Bruijn MHL, Coulson AR, Drouin J, et al. Sequence and organization of the human mitochondrial genome. Nature. 1981;290:457–65. https://doi.org/10.1038/290457a0.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 68.

    Nguyen T, Jeyakumar A. Genetic susceptibility to aminoglycoside ototoxicity. Int J Pediatr Otorhinolaryngol. 2019;120:15–9.

    Article 

    Google Scholar
     

  • 69.

    Mansouri A, Gattolliat CH, Asselah T. Mitochondrial dysfunction and signaling in chronic liver diseases. Gastroenterology. 2018;155:629–47.

    CAS 
    Article 

    Google Scholar
     

  • 70.

    Lee L-N, Huang C-T, Hsu C-L, Chang H-C, Jan I-S, Liu J-L, et al. Mitochondrial DNA variants in patients with liver injury due to anti-tuberculosis drugs. J Clin Med. 2019;8:1207.

    CAS 
    Article 

    Google Scholar
     

  • 71.

    Smith PM, Elson JL, Greaves LC, Wortmann SB, Rodenburg RJT, Lightowlers RN, et al. The role of the mitochondrial ribosome in human disease: searching for mutations in 12s mitochondrial rRNA with high disruptive potential. Hum Mol Genet. 2014;23:949–67. https://doi.org/10.1093/hmg/ddt490.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 72.

    Elson JL, Smith PM, Greaves LC, Lightowlers RN, Chrzanowska-Lightowlers ZMA, Taylor RW, et al. The presence of highly disruptive 16S rRNA mutations in clinical samples indicates a wider role for mutations of the mitochondrial ribosome in human disease. Mitochondrion. 2015;25:17–27. https://doi.org/10.1016/j.mito.2015.08.004.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 73.

    Luca CC, Lam BL, Moraes CT. Erythromycin as a potential precipitating agent in the onset of Leber’s hereditary optic neuropathy. Mitochondrion. 2004;4:31–6. https://doi.org/10.1016/j.mito.2004.05.002.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 74.

    Yu-Wai-Man P, Griffiths PG, Chinnery PF. Mitochondrial optic neuropathies—disease mechanisms and therapeutic strategies. Prog Retin Eye Res. 2011;30:81–114. https://doi.org/10.1016/j.preteyeres.2010.11.002.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)