• 1.

    Forner A, Reig M, Bruix J (2018) Hepatocellular carcinoma. Lancet (London, England) 391:1301–1314. https://doi.org/10.1016/S0140-6736(18)30010-2

    Article 

    Google Scholar
     

  • 2.

    Villanueva A (2019) Hepatocellular carcinoma. The New England journal of medicine 380:1450–1462. https://doi.org/10.1056/nejmra1713263

    Article 

    Google Scholar
     

  • 3.

    Akinyemiju T, Abera S, Ahmed M, Alam N, Alemayohu MA, Allen C, Al-Raddadi R, Alvis-Guzman N, Amoako Y, Artaman A, Ayele TA, Barac A, Bensenor I, Berhane A, Bhutta Z, Castillo-Rivas J, Chitheer A, Choi JY, Cowie B, Dandona L, Dandona R, Dey S, Dicker D, Phuc H, Ekwueme DU, Zaki MS, Fischer F, Fürst T, Hancock J, Hay SI, Hotez P, Jee SH, Kasaeian A, Khader Y, Khang YH, Kumar A, Kutz M, Larson H, Lopez A, Lunevicius R, Malekzadeh R, McAlinden C, Meier T, Mendoza W, Mokdad A, Moradi-Lakeh M, Nagel G, Nguyen Q, Nguyen G, Ogbo F, Patton G, Pereira DM, Pourmalek F, Qorbani M, Radfar A, Roshandel G, Salomon JA, Sanabria J, Sartorius B, Satpathy M, Sawhney M, Sepanlou S, Shackelford K, Shore H, Sun J, Mengistu DT, Topór-Mądry R, Tran B, Ukwaja KN, Vlassov V, Vollset SE, Vos T, Wakayo T, Weiderpass E, Werdecker A, Yonemoto N, Younis M, Yu C, Zaidi Z, Zhu L, Murray CJL, Naghavi M, Fitzmaurice C (2017) The burden of primary liver cancer and underlying etiologies from 1990 to 2015 at the global, regional, and national level: results from the Global Burden of Disease Study 2015. JAMA oncology 3:1683–1691. https://doi.org/10.1001/jamaoncol.2017.3055

    Article 

    Google Scholar
     

  • 4.

    Rashed WM, Kandeil MAM, Mahmoud MO, Ezzat S (2020) Hepatocellular carcinoma (HCC) in Egypt: a comprehensive overview. Journal of the Egyptian National Cancer Institute 32:1–11. https://doi.org/10.1186/s43046-020-0016-x

    Article 

    Google Scholar
     

  • 5.

    Friemel J, Rechsteiner M, Frick L, Böhm F, Struckmann K, Egger M, Moch H, Heikenwalder M, Weber A (2015) Intratumor heterogeneity in hepatocellular carcinoma. Clinical Cancer Research 21:1951–1961. https://doi.org/10.1158/1078-0432.ccr-14-0122

    Article 

    Google Scholar
     

  • 6.

    Lee JM, Yang J, Newell P, Singh S, Parwani A, Friedman SL, Nejak-Bowen KN, Monga SP (2014) β-Catenin signaling in hepatocellular cancer: implications in inflammation, fibrosis, and proliferation. Cancer letters 343:90–97. https://doi.org/10.1016/j.canlet.2013.09.020

    Article 

    Google Scholar
     

  • 7.

    Wang Z, Sheng YY, Gao XM, Wang CQ, Wang XY, Lu X, Wei JW, Zhang KL, Dong QZ, Qin LX (2015) β-catenin mutation is correlated with a favorable prognosis in patients with hepatocellular carcinoma. Molecular and clinical oncology 3:936–940. https://doi.org/10.3892/mco.2015.569

    Article 

    Google Scholar
     

  • 8.

    Zhao C, Nguyen MH (2016) Hepatocellular carcinoma screening and surveillance. Journal of clinical gastroenterology 50:120–133. https://doi.org/10.1097/mcg.0000000000000446

    Article 

    Google Scholar
     

  • 9.

    Ibrahim AS, Khaled HM, Mikhail NN, Baraka H, Kamel H (2014) Cancer incidence in Egypt: results of the national population-based cancer registry program. Journal of cancer epidemiology 2014. https://doi.org/10.1155/2014/437971

  • 10.

    Ziada DH, El Sadany S, Soliman H, Abd-Elsalam S, Salama M, Hawash N, Selim A, Hamisa M, Elsabagh HM (2016) Prevalence of hepatocellular carcinoma in chronic hepatitis C patients in Mid Delta, Egypt: a single center study. Journal of the Egyptian National Cancer Institute 28:257–262. https://doi.org/10.1016/j.jnci.2016.06.001

    Article 

    Google Scholar
     

  • 11.

    Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. International journal of cancer 136:E359–E386. https://doi.org/10.1002/ijc.29210

    Article 

    Google Scholar
     

  • 12.

    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA: a cancer journal for clinicians 61:69–90. https://doi.org/10.3322/caac.20107

    Article 

    Google Scholar
     

  • 13.

    Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A (2015) Global cancer statistics, 2012. CA: a cancer journal for clinicians 65:87–108. https://doi.org/10.3322/caac.21262

    Article 

    Google Scholar
     

  • 14.

    Yarchoan M, Agarwal P, Villanueva A, Rao S, Dawson LA, Karasic T, Llovet JM, Finn RS, Groopman JD, El-Serag HB (2019) Recent developments and therapeutic strategies against hepatocellular carcinoma. Cancer research 79:4326–4330. https://doi.org/10.1158/0008-5472.can-19-0803

    Article 

    Google Scholar
     

  • 15.

    Kudo M, Finn RS, Qin S, Han K-H, Ikeda K, Piscaglia F, Baron A, Park J-W, Han G, Jassem J (2018) Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial. The Lancet 391:1163–1173. https://doi.org/10.1016/s0140-6736(18)30207-1

    Article 

    Google Scholar
     

  • 16.

    Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc J-F, De Oliveira AC, Santoro A, Raoul J-L, Forner A (2008) Sorafenib in advanced hepatocellular carcinoma. New England journal of medicine 359:378–390. https://doi.org/10.1056/nejmoa0708857

    Article 

    Google Scholar
     

  • 17.

    Li J-F, Zheng E-Q, Xie M (2019) Association between rs738409 polymorphism in patatin-like phospholipase domain-containing protein 3 (PNPLA3) gene and hepatocellular carcinoma susceptibility: evidence from case-control studies. Gene 685:143–148. https://doi.org/10.1016/j.gene.2018.11.012

    Article 

    Google Scholar
     

  • 18.

    Nahon P, Zucman-Rossi J (2012) Single nucleotide polymorphisms and risk of hepatocellular carcinoma in cirrhosis. Journal of hepatology 57:663–674. https://doi.org/10.1016/j.jhep.2012.02.035

    Article 

    Google Scholar
     

  • 19.

    Inaki K, Liu ET (2012) Structural mutations in cancer: mechanistic and functional insights. Trends in Genetics 28:550–559. https://doi.org/10.1016/j.tig.2012.07.002

    Article 

    Google Scholar
     

  • 20.

    Nowakowska B (2017) Clinical interpretation of copy number variants in the human genome. Journal of applied genetics 58:449–457. https://doi.org/10.1007/s13353-017-0407-4

    Article 

    Google Scholar
     

  • 21.

    Itsara A, Cooper GM, Baker C, Girirajan S, Li J, Absher D, Krauss RM, Myers RM, Ridker PM, Chasman DI (2009) Population analysis of large copy number variants and hotspots of human genetic disease. The American Journal of Human Genetics 84:148–161. https://doi.org/10.1016/j.ajhg.2008.12.014

    Article 

    Google Scholar
     

  • 22.

    Beeghly-Fadiel A, Lu W, Shu X-O, Long J, Cai Q, Xiang Y, Gao Y-T, Zheng W (2011) MMP9 polymorphisms and breast cancer risk: a report from the Shanghai Breast Cancer Genetics Study. Breast cancer research and treatment 126:507–513. https://doi.org/10.1007/s10549-010-1119-1

    Article 

    Google Scholar
     

  • 23.

    Sharma KL, Misra S, Kumar A, Mittal B (2012) Higher risk of matrix metalloproteinase (MMP-2, 7, 9) and tissue inhibitor of metalloproteinase (TIMP-2) genetic variants to gallbladder cancer. Liver International 32:1278–1286. https://doi.org/10.1111/j.1478-3231.2012.02822.x

    Article 

    Google Scholar
     

  • 24.

    Shrestha S, Tang J, Kaslow RA (2009) Gene copy number: learning to count past two. Nature medicine 15:1127–1129. https://doi.org/10.1038/nm1009-1127

    Article 

    Google Scholar
     

  • 25.

    Xue Q, Cao L, Chen XY, Zhao J, Gao L, Li SZ, Fei Z (2017) High expression of MMP9 in glioma affects cell proliferation and is associated with patient survival rates. Oncology letters 13:1325–1330. https://doi.org/10.3892/ol.2017.5567

    Article 

    Google Scholar
     

  • 26.

    Bradford LD (2002) CYP2D6 allele frequency in European Caucasians, Asians, Africans and their descendants. Pharmacogenomics 3:229–243. https://doi.org/10.1517/14622416.3.2.229

    Article 

    Google Scholar
     

  • 27.

    Hyeon J, Ahn S, Lee JJ, Song DH, Park C-K (2013) Prognostic significance of BCL9 expression in hepatocellular carcinoma. Korean journal of pathology 47:130. https://doi.org/10.4132/koreanjpathol.2013.47.2.130

    Article 

    Google Scholar
     

  • 28.

    Kim TM, Yim SH, Shin SH, Xu HD, Jung YC, Park CK, Choi JY, Park WS, Kwon MS, Fiegler H (2008) Clinical implication of recurrent copy number alterations in hepatocellular carcinoma and putative oncogenes in recurrent gains on 1q. International journal of cancer 123:2808–2815. https://doi.org/10.1002/ijc.23901

    Article 

    Google Scholar
     

  • 29.

    Sistonen J, Sajantila A, Lao O, Corander J, Barbujani G, Fuselli S (2007) CYP2D6 worldwide genetic variation shows high frequency of altered activity variants and no continental structure. Pharmacogenetics and genomics 17:93–101. https://doi.org/10.1038/srep40446

    Article 

    Google Scholar
     

  • 30.

    Xu W, Zhou W, Cheng M, Wang J, Liu Z, He S, Luo X, Huang W, Chen T, Yan W (2017) Hypoxia activates Wnt/β-catenin signaling by regulating the expression of BCL9 in human hepatocellular carcinoma. Scientific reports 7:1–13. https://doi.org/10.1038/srep40446

    Article 

    Google Scholar
     

  • 31.

    Yu, X., Huang, J., Wu, S., Huang, Y., Shan, Y., and Lu, C. (2020) Copy number variations of MMP-9 are prognostic biomarkers for hepatocellular carcinoma, Translational Cancer Research 9, 698-706. 10.21037/tcr.2019.11.52

  • 32.

    Hashimoto K, Mori N, Tamesa T, Okada T, Kawauchi S, Oga A, Furuya T, Tangoku A, Oka M, Sasaki K (2004) Analysis of DNA copy number aberrations in hepatitis C virus-associated hepatocellular carcinomas by conventional CGH and array CGH. Modern Pathology 17:617–622. https://doi.org/10.1038/modpathol.3800107

    Article 

    Google Scholar
     

  • 33.

    Moinzadeh P, Breuhahn K, Stützer H, Schirmacher P (2005) Chromosome alterations in human hepatocellular carcinomas correlate with aetiology and histological grade–results of an explorative CGH meta-analysis. British journal of cancer 92:935–941. https://doi.org/10.1038/sj.bjc.6602448

    Article 

    Google Scholar
     

  • 34.

    Zimonjic DB, Keck CL, Thorgeirsson SS, Popescu NC (1999) Novel recurrent genetic imbalances in human hepatocellular carcinoma cell lines identified by comparative genomic hybridization. Hepatology 29:1208–1214. https://doi.org/10.1002/hep.510290410

    Article 

    Google Scholar
     

  • 35.

    Wong N, Lai P, Lee S-W, Fan S, Pang E, Liew C-T, Sheng Z, Lau JW-Y, Johnson PJ (1999) Assessment of genetic changes in hepatocellular carcinoma by comparative genomic hybridization analysis: relationship to disease stage, tumor size, and cirrhosis. The American journal of pathology 154:37–43. https://doi.org/10.1016/s0002-9440(10)65248-0

    Article 

    Google Scholar
     

  • 36.

    De la Roche M, Worm J, Bienz M (2008) The function of BCL9 in Wnt/β-catenin signaling and colorectal cancer cells. BMC cancer 8:1–13. https://doi.org/10.1186/1471-2407-8-199

    Article 

    Google Scholar
     

  • 37.

    Kramps T, Peter O, Brunner E, Nellen D, Froesch B, Chatterjee S, Murone M, Züllig S, Basler K (2002) Wnt/wingless signaling requires BCL9/legless-mediated recruitment of pygopus to the nuclear β-catenin-TCF complex. Cell 109:47–60. https://doi.org/10.1016/s0092-8674(02)00679-7

    Article 

    Google Scholar
     

  • 38.

    Mani M, Carrasco DE, Zhang Y, Takada K, Gatt ME, Dutta-Simmons J, Ikeda H, Diaz-Griffero F, Pena-Cruz V, Bertagnolli M (2009) BCL9 promotes tumor progression by conferring enhanced proliferative, metastatic, and angiogenic properties to cancer cells. Cancer research 69:7577–7586. https://doi.org/10.1158/0008-5472.can-09-0773

    Article 

    Google Scholar
     

  • 39.

    Takada, K., Zhu, D., Bird, G. H., Sukhdeo, K., Zhao, J.-J., Mani, M., Lemieux, M., Carrasco, D. E., Ryan, J., and Horst, D. (2012) Targeted disruption of the BCL9/β-catenin complex inhibits oncogenic Wnt signaling, Science translational medicine 4, 148ra117-148ra117. https://doi.org/10.1126/scitranslmed.3003808

  • 40.

    Zhao J-J, Lin J, Zhu D, Wang X, Brooks D, Chen M, Chu Z-B, Takada K, Ciccarelli B, Tao J (2014) miR-30-5p functions as a tumor suppressor and novel therapeutic tool by targeting the oncogenic Wnt/β-catenin/BCL9 pathway. Cancer research 74:1801–1813. https://doi.org/10.1158/0008-5472.can-13-3311-t

    Article 

    Google Scholar
     

  • 41.

    Gay DM, Ridgway RA, Müller M, Hodder MC, Hedley A, Clark W, Leach JD, Jackstadt R, Nixon C, Huels DJ (2019) Loss of BCL9/9l suppresses Wnt driven tumourigenesis in models that recapitulate human cancer. Nature communications 10:1–16. https://doi.org/10.1038/s41467-019-08586-3

    Article 

    Google Scholar
     

  • 42.

    Yang C, Xu Y, Cheng F, Hu Y, Yang S, Rao J, Wang X (2017) miR-1301 inhibits hepatocellular carcinoma cell migration, invasion, and angiogenesis by decreasing Wnt/β-catenin signaling through targeting BCL9. Cell death & disease 8:e2999–e2999. https://doi.org/10.1038/cddis.2017.356

    Article 

    Google Scholar
     

  • 43.

    Bodin L, Beaune PH, Loriot M-A (2005) Determination of cytochrome P450 2D6 (CYP2D6) gene copy number by real-time quantitative PCR. Journal of Biomedicine and Biotechnology 2005:248–253. https://doi.org/10.1155/JBB.2005.248

    Article 

    Google Scholar
     

  • 44.

    Nguyen DL, Staeker J, Laika B, Steimer W (2009) TaqMan real-time PCR quantification strategy of CYP2D6 gene copy number for the LightCycler 2.0. Clinica chimica acta 403:207–211. https://doi.org/10.1016/j.cca.2009.03.007

    Article 

    Google Scholar
     

  • 45.

    Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nature protocols 3:1101–1108. https://doi.org/10.1038/nprot.2008.73

    Article 

    Google Scholar
     

  • 46.

    McGlynn KA, Petrick JL, El-Serag HB (2021) Epidemiology of hepatocellular carcinoma. Hepatology 73:4–13. https://doi.org/10.1002/hep.31288

    Article 

    Google Scholar
     

  • 47.

    Omar A, Abou-Alfa GK, Khairy A, Omar H (2013) Risk factors for developing hepatocellular carcinoma in Egypt. Chinese clinical oncology 2. https://doi.org/10.3978/j.issn.2304-3865.2013.11.07

  • 48.

    Liver EAFTSOT (2018) EASL clinical practice guidelines: management of hepatocellular carcinoma. Journal of hepatology 69:182–236. https://doi.org/10.1016/j.jhep.2018.03.019

    Article 

    Google Scholar
     

  • 49.

    Llovet JM, Burroughs A, Bruix J (2003) Hepatocellular carcinoma. Lancet (London, England) 362:1907–1917. https://doi.org/10.1016/s0140-6736(03)14964-1

    Article 

    Google Scholar
     

  • 50.

    Martínez-Chantar ML, Avila MA, Lu SC (2020) Hepatocellular carcinoma: updates in pathogenesis, detection and treatment. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/cancers12102729

  • 51.

    Cillo U, Vitale A, Grigoletto F, Farinati F, Brolese A, Zanus G, Neri D, Boccagni P, Srsen N, D’Amico F (2006) Prospective validation of the Barcelona Clinic Liver Cancer staging system. Journal of hepatology 44:723–731. https://doi.org/10.1016/j.jhep.2005.12.015

    Article 

    Google Scholar
     

  • 52.

    Gomaa AI, Hashim MS, Waked I (2014) Comparing staging systems for predicting prognosis and survival in patients with hepatocellular carcinoma in Egypt. PloS one 9:e90929. https://doi.org/10.1371/journal.pone.0090929

    Article 

    Google Scholar
     

  • 53.

    Grieco A, Pompili M, Caminiti G, Miele L, Covino M, Alfei B, Rapaccini GL, Gasbarrini G (2005) Prognostic factors for survival in patients with early-intermediate hepatocellular carcinoma undergoing non-surgical therapy: comparison of Okuda. CLIP, and BCLC staging systems in a single Italian centre, Gut 54:411–418. https://doi.org/10.1136/gut.2004.048124

    Article 

    Google Scholar
     

  • 54.

    Lee, J. H., Han, S. Y., Jo, J. H., Kim, S. K., Go, B. S., Oh, J. Y., Choi, J. C., Lee, S. W., Jang, J. S., and Roh, M. H. (2007) Prognostic factors for survival in patients with hepatocellular carcinoma after radiofrequency ablation, The Korean journal of gastroenterology= Taehan Sohwagi Hakhoe chi 49, 17-23. https://doi.org/10.4166/kjg.2020.75.1.17

  • 55.

    Marrero JA, Fontana RJ, Barrat A, Askari F, Conjeevaram HS, Su GL, Lok AS (2005) Prognosis of hepatocellular carcinoma: comparison of 7 staging systems in an American cohort. Hepatology 41:707–715. https://doi.org/10.1002/hep.20636

    Article 

    Google Scholar
     

  • 56.

    Li P, Cao Y, Li Y, Zhou L, Liu X, Geng M (2014) Expression of Wnt-5a and β-catenin in primary hepatocellular carcinoma. International journal of clinical and experimental pathology 7:3190


    Google Scholar
     

  • 57.

    Bigagli E, De Filippo C, Castagnini C, Toti S, Acquadro F, Giudici F, Fazi M, Dolara P, Messerini L, Tonelli F (2016) DNA copy number alterations, gene expression changes and disease-free survival in patients with colorectal cancer: a 10 year follow-up. Cellular Oncology 39:545–558. https://doi.org/10.1007/s13402-016-0299-z

    Article 

    Google Scholar
     

  • 58.

    Lau S-H, Guan X-Y (2005) Cytogenetic and molecular genetic alterations in hepatocellular carcinoma. Acta Pharmacologica Sinica 26:659–665. https://doi.org/10.1111/j.1745-7254.2005.00126.x

    Article 

    Google Scholar
     

  • 59.

    Wang K, Lim HY, Shi S, Lee J, Deng S, Xie T, Zhu Z, Wang Y, Pocalyko D, Yang WJ (2013) Genomic landscape of copy number aberrations enables the identification of oncogenic drivers in hepatocellular carcinoma. Hepatology 58:706–717. https://doi.org/10.1002/hep.26402

    Article 

    Google Scholar
     

  • 60.

    Huge N, Sandbothe M, Schröder AK, Stalke A, Eilers M, Schäffer V, Schlegelberger B, Illig T, Vajen B, Skawran B (2020) Wnt status-dependent oncogenic role of BCL9 and BCL9L in hepatocellular carcinoma. Hepatology international 14:373–384. https://doi.org/10.1007/s12072-019-09977-w

    Article 

    Google Scholar
     

  • 61.

    Moghe A, Monga SP (2020) BCL9/BCL9L in hepatocellular carcinoma: will it or Wnt it be the next therapeutic target? Springer. https://doi.org/10.1007/s12072-020-10059-5

  • 62.

    Molparia B, Oliveira G, Wagner JL, Spencer EG, Torkamani A (2018) A feasibility study of colorectal cancer diagnosis via circulating tumor DNA derived CNV detection. PloS one 13:e0196826. https://doi.org/10.1371/journal.pone.0196826

    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.springeropen.com/)