• 1.

    Chen HW, Lee JH, Lin BY, Chen S, Wu ST (2018) Liquid crystal display and organic light-emitting diode display: present status and future perspectives. Light Sci Appl 7:17168. https://doi.org/10.1038/lsa.2017.168

    CAS 
    Article 

    Google Scholar
     

  • 2.

    Huang Y, Hsiang EL, Deng MY, Wu ST (2020) Mini-LED, Micro-LED and OLED displays: present status and future perspectives. Light Sci Appl 9:105. https://doi.org/10.1038/s41377-020-0341-9

    CAS 
    Article 

    Google Scholar
     

  • 3.

    Qi Y, Xiao X, Lu Y, Shu J, Wang J, Chen M (2019) Cathode ray tubes glass recycling: a review. Sci Total Environ 650(Pt 2):2842–2849. https://doi.org/10.1016/j.scitotenv.2018.09.383

    CAS 
    Article 

    Google Scholar
     

  • 4.

    Desroches L-B, Ganeshalingam M (2015) The dynamics of incremental costs of efficient television display technologies. Technol Forecast Soc Change 90:562–574. https://doi.org/10.1016/j.techfore.2014.02.016

    Article 

    Google Scholar
     

  • 5.

    Lin C-H (2006) Digital-dimming controller with current spikes elimination technique for LCD backlight electronic ballast. IEEE Trans Ind Electron 53(6):1881–1888. https://doi.org/10.1109/tie.2006.885143

    Article 

    Google Scholar
     

  • 6.

    Hong T-Y, Chien C-F (2020) A simulation-based dynamic scheduling and dispatching system with multi-criteria performance evaluation for Industry 3.5 and an empirical study for sustainable TFT-LCD array manufacturing. Int J Prod Res 58(24):7531–7547. https://doi.org/10.1080/00207543.2020.1777342

    Article 

    Google Scholar
     

  • 7.

    Wu C, Wang X, Lin L, Guo H, Wang ZL (2016) Paper-based triboelectric nanogenerators made of stretchable interlocking Kirigami patterns. ACS Nano 10(4):4652–4659. https://doi.org/10.1021/acsnano.6b00949

    CAS 
    Article 

    Google Scholar
     

  • 8.

    Yuan F, He P, Xi Z, Li X, Li Y, Zhong H, Fan L, Yang S (2019) Highly efficient and stable white LEDs based on pure red narrow bandwidth emission triangular carbon quantum dots for wide-color gamut backlight displays. Nano Res 12(7):1669–1674. https://doi.org/10.1007/s12274-019-2420-x

    CAS 
    Article 

    Google Scholar
     

  • 9.

    Chen H, Zhu R, Tan G, Li MC, Lee SL, Wu ST (2017) Enlarging the color gamut of liquid crystal displays with a functional reflective polarizer. Opt Express 25(1):102–111. https://doi.org/10.1364/OE.25.000102

    CAS 
    Article 

    Google Scholar
     

  • 10.

    Lee TX, Chen BS (2016) High uniformity and tolerance design for direct-lit LED backlight illumination using lagrange interpolation (in English). J Disp Technol 12(11):1403–1410. https://doi.org/10.1109/jdt.2016.2606649

  • 11.

    Oh JH, Kang H, Ko M, Do YR (2015) Analysis of wide color gamut of green/red bilayered freestanding phosphor film-capped white LEDs for LCD backlight. Opt Express 23(15):A791-804. https://doi.org/10.1364/OE.23.00A791

    CAS 
    Article 

    Google Scholar
     

  • 12.

    Chen H-W, Zhu R-D, He J, Duan W, Wei Hu, Yan-Qing Lu, Li M-C, Lee S-L, Dong Y-J, Shin-Tson Wu (2017) Going beyond the limit of an LCD’s color gamut. Light Sci Appl 6(9):e17043. https://doi.org/10.1038/lsa.2017.43

    CAS 
    Article 

    Google Scholar
     

  • 13.

    Chen H, Zhu R, Li MC, Lee SL, Wu ST (2017) Pixel-by-pixel local dimming for high-dynamic-range liquid crystal displays. Opt Express 25(3):1973–1984. https://doi.org/10.1364/OE.25.001973

    Article 

    Google Scholar
     

  • 14.

    Song J, Lee H, Jeong EG, Choi KC, Yoo S (2020) Organic light-emitting diodes: pushing toward the limits and beyond. Adv Mater 32(35):e1907539. https://doi.org/10.1002/adma.201907539

    CAS 
    Article 

    Google Scholar
     

  • 15.

    Wang S, Zhang H, Zhang B, Xie Z, Wong W-Y (2020) Towards high-power-efficiency solution-processed OLEDs: material and device perspectives. Mater Sci Eng R Rep. https://doi.org/10.1016/j.mser.2020.100547

    Article 

    Google Scholar
     

  • 16.

    Ai X, Evans EW, Dong S, Gillett AJ, Guo H, Chen Y, Hele TJ, Friend RH, Li F (2018) Efficient radical-based light-emitting diodes with doublet emission. Nature 563(7732):536–540. https://doi.org/10.1038/s41586-018-0695-9

    CAS 
    Article 

    Google Scholar
     

  • 17.

    Chen JX, Tao WW, Chen WC, Xiao YF, Wang K, Cao C, Yu J, Li S, Geng FX, Adachi C, Lee CS (2019) Red/near-infrared thermally activated delayed fluorescence OLEDs with near 100% internal quantum efficiency. Angew Chemie 131(41):14802–14807. https://doi.org/10.1002/anie.201906575

    CAS 
    Article 

    Google Scholar
     

  • 18.

    Hu Z, Yin Y, Ali MU, Peng W, Zhang S, Li D, Zou T, Li Y, Jiao S, Chen SJ, Lee CY (2020) Inkjet printed uniform quantum dots as color conversion layers for full-color OLED displays. Nanoscale 12(3):2103–2110. https://doi.org/10.1039/c9nr09086j

    CAS 
    Article 

    Google Scholar
     

  • 19.

    Xu Z, Gu J, Qiao X, Qin A, Tang BZ, Ma D (2019) Highly efficient deep blue aggregation-induced emission organic molecule: a promising multifunctional electroluminescence material for blue/green/orange/red/white OLEDs with superior efficiency and low roll-off. ACS Photon 6(3):767–778. https://doi.org/10.1021/acsphotonics.8b01724

    CAS 
    Article 

    Google Scholar
     

  • 20.

    Pang Z, Sun D, Zhang C, Baniya S, Kwon O, Vardeny ZV (2017) Manipulation of emission colors based on intrinsic and extrinsic magneto-electroluminescence from exciplex organic light-emitting diodes. ACS Photon 4(8):1899–1905. https://doi.org/10.1021/acsphotonics.7b00567

    CAS 
    Article 

    Google Scholar
     

  • 21.

    Chen LC, Tien C-H, Chen DF, Kuo HC, Ye ZT (2019) High-uniformity planar mini-chip-scale packaged LEDs with quantum dots converter for white light source. Nanoscale Res Lett. https://doi.org/10.1186/s11671-019-2993-z

    Article 

    Google Scholar
     

  • 22.

    Won Y-H, Cho O, Kim T, Chung D-Y, Kim T, Chung H, Jang H, Lee J, Kim D, Jang E (2019) Highly efficient and stable InP/ZnS/ZnS quantum dot light-emitting diodes. Nature 575(7784):634–638. https://doi.org/10.1038/s41586-019-1771-5

    CAS 
    Article 

    Google Scholar
     

  • 23.

    Lan X, Chen M, Hudson MH, Kamysbayev V, Wang Y, Guyot-Sionnest P, Talapin DV (2020) Quantum dot solids showing state-resolved band-like transport. Nat Mater 19(3):323–329. https://doi.org/10.1038/s41563-019-0582-2

    CAS 
    Article 

    Google Scholar
     

  • 24.

    Keum H, Jiang Y, Park JK, Flanagan JC, Shim M, Kim S (2018) Photoresist contact patterning of quantum dot films. ACS Nano 12(10):10024–10031. https://doi.org/10.1021/acsnano.8b04462

    CAS 
    Article 

    Google Scholar
     

  • 25.

    Su Q, Zhang H, Chen S (2021) Flexible and tandem quantum-dot light-emitting diodes with individually addressable red/green/blue emission. npj Flexible Electron. https://doi.org/10.1038/s41528-021-00106-y

    Article 

    Google Scholar
     

  • 26.

    Ye ZT, Ruan MJ, Kuo HC (2020) CSP-leds combined with light guide without reflective matrix for antiglare design. IEEE Access 8:156718–156726. https://doi.org/10.1109/access.2020.3019314

    Article 

    Google Scholar
     

  • 27.

    Ye ZT, Chang C, Juan MC, Chen KJ (2020) luminous intensity field optimization for antiglare LED desk lamp without second optical element. Appl Sci Basel 10(7):13. https://doi.org/10.3390/app10072607

    CAS 
    Article 

    Google Scholar
     

  • 28.

    Lee HE et al (2019) Wireless powered wearable micro light-emitting diodes. Nano Energy 55:454–462. https://doi.org/10.1016/j.nanoen.2018.11.017

    CAS 
    Article 

    Google Scholar
     

  • 29.

    Kim K, Voroslakos M, Seymour JP, Wise KD, Buzsaki G, Yoon E (2020) Artifact-free and high-temporal-resolution in vivo opto-electrophysiology with microLED optoelectrodes. Nat Commun 11(1):2063. https://doi.org/10.1038/s41467-020-15769-w

    CAS 
    Article 

    Google Scholar
     

  • 30.

    Xuan T, Shi S, Wang L, Kuo HC, Xie RJ (2020) Inkjet-printed quantum dot color conversion films for high-resolution and full-color micro light-emitting diode displays. J Phys Chem Lett 11(13):5184–5191. https://doi.org/10.1021/acs.jpclett.0c01451

    CAS 
    Article 

    Google Scholar
     

  • 31.

    Pan Z, Guo C, Wang X, Liu J, Cao R, Gong Y, Wang J, Liu N, Chen Z, Wang L, Ishikawa M (2020) Wafer-scale micro-LEDs transferred onto an adhesive film for planar and flexible displays. Adv Mater Technol 5(12):200549. https://doi.org/10.1002/admt.202000549

    CAS 
    Article 

    Google Scholar
     

  • 32.

    Yuan Z, Shujie G, Xia Mao Gu, Simin ZY, Xianbo Wu, Jing W, Nan Z, Zhi Z (2019) Enhancing quantum efficiency and tuning photoluminescence properties in far-red-emitting phosphor Ca14Ga10Zn6O35:Mn4+ based on chemical unit engineering. Chem Eng J 374:381–391. https://doi.org/10.1016/j.cej.2019.05.201

    CAS 
    Article 

    Google Scholar
     

  • 33.

    Chen SW, Huang YM, Singh KJ, Hsu YC, Liou FJ, Song J, Choi J, Lee PT, Lin CC, Chen Z, Han J (2020) Full-color micro-LED display with high color stability using semipolar (20–21) InGaN LEDs and quantum-dot photoresist. Photon Res 8(5):630–636. https://doi.org/10.1364/prj.388958

    CAS 
    Article 

    Google Scholar
     

  • 34.

    Qi L, Zhang X, Chong WC, Li P, Lau KM (2021) 848 ppi high-brightness active-matrix micro-LED micro-display using GaN-on-Si epi-wafers towards mass production. Opt Express 29(7):10580–10591. https://doi.org/10.1364/OE.419877

    Article 

    Google Scholar
     

  • 35.

    Zhou X, Tian P, Sher CW, Wu J, Liu H, Liu R, Kuo HC (2020) Growth, transfer printing and colour conversion techniques towards full-colour micro-LED display. Prog Quant Electron 1(71):100. https://doi.org/10.1016/j.pquantelec.2020.100263

    Article 

    Google Scholar
     

  • 36.

    Zhang W, Ding S, Zhuang W, Wu D, Liu P, Qu X, Liu H, Yang H, Wu Z, Wang K, Sun XW (2020) InP/ZnS/ZnS core/shell blue quantum dots for efficient light-emitting diodes. Adv Funct Mater 30(49):2005303. https://doi.org/10.1002/adfm.202005303

    CAS 
    Article 

    Google Scholar
     

  • 37.

    Li Y, Tao J, Wang Q, Zhao Y, Sun Y, Li P, Lv J, Qin Y, Wang W, Zeng Q, Liang J (2021) Microfluidics-based quantum dot color conversion layers for full-color micro-LED display. Appl Phys Lett 118(17):173501. https://doi.org/10.1063/5.0047854

    CAS 
    Article 

    Google Scholar
     

  • 38.

    Yin Y, Hu Z, Ali MU, Duan M, Gao L, Liu M, Peng W, Geng J, Pan S, Wu Y, Hou J (2020) Full-color micro-LED display with CsPbBr 3 perovskite and CdSe quantum dots as color conversion layers. Adv Mater Technol 5(8):2000251. https://doi.org/10.1002/admt.202000251

    CAS 
    Article 

    Google Scholar
     

  • 39.

    Shih YC, Shi FG (2017) Quantum dot based enhancement or elimination of color filters for liquid crystal display. IEEE J Sel Top Quant Electron 23(5):1–4. https://doi.org/10.1109/jstqe.2017.2748923

    Article 

    Google Scholar
     

  • 40.

    Ma Y, Xin SJ, Liu X, Liu Y, Sun J, Wang X, Guo Q, Chigrinov VG (2020) Colour generation for optically driving liquid crystal display. Liq Crystals 47(12):1729–1734. https://doi.org/10.1080/02678292.2020.1721580

    CAS 
    Article 

    Google Scholar
     

  • 41.

    Itoh Y, Langlotz T, Iwai D, Kiyokawa K, Amano T (2019) Light attenuation display: subtractive see-through near-eye display via spatial color filtering. IEEE Trans Vis Comput Graph 25(5):1951–1960. https://doi.org/10.1109/TVCG.2019.2899229

    Article 

    Google Scholar
     

  • 42.

    Ji C, Lee KT, Xu T, Zhou J, Park HJ, Guo LJ (2017) Engineering light at the nanoscale: structural color filters and broadband perfect absorbers. Adv Opt Mater. https://doi.org/10.1002/adom.201700368

    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.springeropen.com/)