• 1.

    Chen W, Qi J, Wu P, Wan D, Liu J, Feng X, et al. Natural and engineered biosynthesis of nucleoside antibiotics in Actinomycetes. J Ind Microbiol Biotechnol. 2016;43(2–3):401–17.

    CAS 
    PubMed 

    Google Scholar
     

  • 2.

    Walsh CT, Zhang W. Chemical logic and enzymatic machinery for biological assembly of peptidyl nucleoside antibiotics. ACS Chem Biol. 2011;6(10):1000–7.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 3.

    Stambaský J, Hocek M, Kocovský P. C-nucleosides: synthetic strategies and biological applications. Chem Rev. 2009;109(12):6729–64.

    PubMed 

    Google Scholar
     

  • 4.

    Hamma T, Ferré-D′′Amaré AR. Pseudouridine synthases. Chem Biol. 2006;13(11):1125–35.

    CAS 
    PubMed 

    Google Scholar
     

  • 5.

    Palmu K, Rosenqvist P, Thapa K, Ilina Y, Siitonen V, Baral B, et al. Discovery of the showdomycin gene cluster from Streptomyces showdoensis ATCC 15227 yields insight into the biosynthetic logic of C-nucleoside antibiotics. ACS Chem Biol. 2017;12(6):1472–7.

    CAS 
    PubMed 

    Google Scholar
     

  • 6.

    Kong L, Xu G, Liu X, Wang J, Tang Z, Cai YS, et al. Divergent biosynthesis of C-nucleoside minimycin and indigoidine in bacteria. iScience. 2019;22:430–40.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 7.

    Zhang M, Zhang P, Xu G, Zhou W, Gao Y, Gong R, et al. Comparative investigation into formycin A and pyrazofurin A biosynthesis reveals branch pathways for the construction of C-nucleoside scaffolds. Appl Environ Microbiol. 2020;86(2):e01971-e2019.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 8.

    Ren D, Wang SA, Ko Y, Geng Y, Ogasawara Y, Liu HW. Identification of the C-glycoside synthases during biosynthesis of the pyrazole-C-nucleosides formycin and pyrazofurin. Angew Chem Int Ed. 2019;58(46):16512–6.

    CAS 

    Google Scholar
     

  • 9.

    Sosio M, Gaspari E, Iorio M, Pessina S, Medema MH, Bernasconi A, et al. Analysis of the pseudouridimycin biosynthetic pathway provides insights into the formation of C-nucleoside antibiotics. Cell Chem Biol. 2018;25(5):540-549.e4.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 10.

    Hong H, Samborskyy M, Zhou Y, Leadlay PF. C-nucleoside formation in the biosynthesis of the antifungal malayamycin A. Cell Chem Biol. 2019;26(4):493–501.

    CAS 
    PubMed 

    Google Scholar
     

  • 11.

    Shiraishi T, Kuzuyama T. Recent advances in the biosynthesis of nucleoside antibiotics. J Antibiot (Tokyo). 2019;72(12):913–23.

    CAS 

    Google Scholar
     

  • 12.

    Li Z, Zhu D, Shen Y. Discovery of novel bioactive natural products driven by genome mining. Drug Discov Ther. 2018;12(6):318–28.

    CAS 
    PubMed 

    Google Scholar
     

  • 13.

    Nakagawa Y, Kanŏ H, Tsukuda Y, Koyama H. Structure of a new class of C-nucleoside antibiotic, showdomycin. Tetrahedron Lett. 1967;8(42):4105–9.


    Google Scholar
     

  • 14.

    Kalvoda L, Farkas J, Sorm F. Synthesis of showdomycin. Tetrahedron Lett. 1970;11(26):2297–300.


    Google Scholar
     

  • 15.

    Nishimura H, Mayama M, Komatsu Y, Kato H, Shimaoka N, Tanaka Y. Showdomycin, a new antibiotic from a Streptomyces sp. J Antibiot (Tokyo). 1964;17:148–55.

    CAS 

    Google Scholar
     

  • 16.

    Roy-Burman S, Roy-Burman P, Visser DW. Showdomycin, a new nucleoside antibiotic. Cancer Res. 1968;28(8):1605–10.

    CAS 
    PubMed 

    Google Scholar
     

  • 17.

    Elstner EF, Suhadolnik RJ. Nucleoside antibiotics. Biosynthesis of the maleimide nucleoside antibiotic, showdomycin, by Streptomyces showdoensis. Biochemistry. 1971;10(19):3608–14.

    CAS 
    PubMed 

    Google Scholar
     

  • 18.

    Elstner EF, Suhadolnik RJ. Nucleoside antibiotics. Asymmetric incorporation of glutamic acid and acetate into the maleimide ring of showdomycin by Streptomyces showdoensis. Biochemistry. 1972;11(14):2578–84.

    CAS 
    PubMed 

    Google Scholar
     

  • 19.

    Elstner EF, Suhadolnik RJ, Allerhand A. Effect of changes in the pool of acetate on the incorporation and distribution of 13C- and 14C-labeled acetate into showdomycin by Streptomyces showdoensis. J Biol Chem. 1973;248(15):5385–8.

    CAS 
    PubMed 

    Google Scholar
     

  • 20.

    Ren D, Kim M, Wang SA, Liu HW. Identification of a pyrrole intermediate which undergoes C-glycosidation and autoxidation to yield the final product in showdomycin biosynthesis. Angew Chem Int Ed. 2021;60(31):17148–54.

    CAS 

    Google Scholar
     

  • 21.

    Kusakabe Y, Nagatsu J, Shibuya M, Kawaguchi O, Hirose C. Minimycin, a new antibiotic. J Antibiot (Tokyo). 1972;25(1):44–7.

    CAS 

    Google Scholar
     

  • 22.

    Tymiak AA, Culver CA, Goodman JF, Seiner VS, Sykes RB. Oxazinomycin produced by a Pseudomonas species. J Antibiot (Tokyo). 1984;37(4):416–8.

    CAS 

    Google Scholar
     

  • 23.

    De Bernardo S, Weigele M. Synthesis of oxazinomycin (minimycin). J Org Chem. 1977;42(1):109–12.

    PubMed 

    Google Scholar
     

  • 24.

    Haneishi T, Okazaki T, Hata T, Tamura C, Nomura M. Oxazinomycin, a new carbon-linked nucleoside antibiotic. J Antibiot (Tokyo). 1971;24(11):797–9.

    CAS 

    Google Scholar
     

  • 25.

    Sasaki K, Kusakabe Y, Esumi S. The structure of minimycin, a novel carbon-linked nucleoside antibiotic related to β-pseudouridine. J Antibiot (Tokyo). 1972;25(3):151–4.

    CAS 

    Google Scholar
     

  • 26.

    Prajapati RK, Rosenqvist P, Palmu K, Mäkinen JJ, Malinen AM, Virta P, et al. Oxazinomycin arrests RNA polymerase at the polythymidine sequences. Nucleic Acids Res. 2019;47(19):10296–312.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 27.

    Isono K, Suhadolnik RJ. Biosynthesis of the C-nucleoside, minimycin: asymmetric incorporation of glutamate and acetate into the oxazine ring. J Antibiot (Tokyo). 1977;30(3):272–3.

    CAS 

    Google Scholar
     

  • 28.

    Isono K, Suhadolnik RJ. The biosynthesis of the nucleoside antibiotics: minimycin formation by Streptomyces hygroscopicus. Ann N Y Acad Sci. 1975;255:390–401.

    CAS 
    PubMed 

    Google Scholar
     

  • 29.

    Pang B, Chen Y, Gan F, Yan C, Jin L, Gin JW, et al. Investigation of indigoidine synthetase reveals a conserved active-site base residue of nonribosomal peptide synthetase oxidases. J Am Chem Soc. 2020;142(25):10931–5.

    CAS 
    PubMed 

    Google Scholar
     

  • 30.

    Hori M, Takita T, Koyama G, Tadeuchi T, Umezawa H. A new antibiotic, formycin. J Antibiot (Tokyo). 1964;17:96–9.

    CAS 

    Google Scholar
     

  • 31.

    Aizawa S, Hidaka T, Ōtake N, Yonehara H, Isono K, Igarashi N, et al. Studies on a new antibiotic, laurusin. Agric Biol Chem. 1965;29(4):375–6.

    CAS 

    Google Scholar
     

  • 32.

    Suhadolnik RJ, Uematsu T. Biosynthesis of the pyrrolopyrimidine nucleoside antibiotic, toyocamycin. VII. Origin of the pyrrole carbons and the cyano carbon. J Biol Chem. 1970;245(17):4365–71.

    CAS 
    PubMed 

    Google Scholar
     

  • 33.

    Krugh TR. Tautomerism of the nucleoside antibiotic formycin, as studied by carbon-13 nuclear magnetic resonance. J Am Chem Soc. 1973;95(14):4761–2.

    CAS 
    PubMed 

    Google Scholar
     

  • 34.

    Prusiner P, Brennan T, Sundaralingam M. Crystal structure and molecular conformation of formycin monohydrates. Possible origin of the anomalous circular dichroic spectra in formycin mono- and polynucleotides. Biochemistry. 1973;12(6):1196–202.

    CAS 
    PubMed 

    Google Scholar
     

  • 35.

    Ishizuka M, Sawa T, Hori S, Takayama H, Takeuchi T. Biological studies on formycin and formycin B. J Antibiot (Tokyo). 1968;21(1):5–12.

    CAS 

    Google Scholar
     

  • 36.

    Takeuchi T, Iwanaga J, Aoyagi T, Umezawa H. Antiviral effect of formycin and formycin B. J Antibiot (Tokyo). 1966;19(6):286–7.

    CAS 

    Google Scholar
     

  • 37.

    Dapp MJ, Bonnac L, Patterson SE, Mansky LM. Discovery of novel ribonucleoside analogs with activity against human immunodeficiency virus type 1. J Virol. 2014;88(1):354–63.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 38.

    Henderson JF, Paterson ARP, Caldwell IC, Hori M. Biochemical effects of formycin, an adenosine analog. Cancer Res. 1967;27(4):715–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 39.

    Kunimoto T, Sawa T, Wakashiro T, Hori M, Umezawa H. Biosynthesis of the formycin family. J Antibiot (Tokyo). 1971;24(4):253–8.

    CAS 

    Google Scholar
     

  • 40.

    Ochi K, Iwamoto S, Hayase E, Yashima S, Okami Y. Biosynthesis of formycin. Role of certain amino acids in formycin biosynthesis. J Antibiot (Tokyo). 1974;27(12):909–16.

    CAS 

    Google Scholar
     

  • 41.

    Ochi K, Yashima S, Eguchi Y, Matsushita K. Biosynthesis of formycin. Incorporation and distribution of 13C-, 14C-, and 15N-labeled compounds into formycin. J Biol Chem. 1979;254(18):8819–24.

    CAS 
    PubMed 

    Google Scholar
     

  • 42.

    Ko Y, Wang SA, Ogasawara Y, Ruszczycky MW, Liu HW. Identification and characterization of enzymes catalyzing pyrazolopyrimidine formation in the biosynthesis of formycin A. Org Lett. 2017;19(6):1426–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 43.

    Wang SA, Ko Y, Zeng J, Geng Y, Ren D, Ogasawara Y, et al. Identification of the formycin A biosynthetic gene cluster from Streptomyces kaniharaensis illustrates the interplay between biological pyrazolopyrimidine formation and de Novo purine biosynthesis. J Am Chem Soc. 2019;141(15):6127–31.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 44.

    Zhu W, Liu X, Hughes M, de Crecy-Lagard V, Richards NGJ. Whole-genome sequence of Streptomyces kaniharaensis Shomura and Niida SF-557. Microbiol Resour Announc. 2020;9(14):e01434-e1519.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 45.

    Nakamura H, Koyama G, Iitaka Y, Ohno M, Yagisawa N, Kondo S, et al. Structure of coformycin, an unusual nucleoside of microbial origin. J Am Chem Soc. 1974;96(13):4327–8.

    CAS 
    PubMed 

    Google Scholar
     

  • 46.

    Matsuda K, Tomita T, Shin-Ya K, Wakimoto T, Kuzuyama T, Nishiyama M. Discovery of unprecedented hydrazine-forming machinery in bacteria. J Am Chem Soc. 2018;140(29):9083–6.

    CAS 
    PubMed 

    Google Scholar
     

  • 47.

    Gao S, Liu H, de Crecy-Lagard V, Zhu W, Richards NGJ, Naismith JH. PMP-diketopiperazine adducts form at the active site of a PLP dependent enzyme involved in formycin biosynthesis. ChemComm. 2019;55(96):14502–5.

    CAS 

    Google Scholar
     

  • 48.

    Gao S, Radadiya A, Li W, Liu H, Zhu W, de Crécy-Lagard V, et al. Uncovering the chemistry of C-C bond formation in C-nucleoside biosynthesis: crystal structure of a C-glycoside synthase/PRPP complex. ChemComm. 2020;56(55):7617–20.

    CAS 

    Google Scholar
     

  • 49.

    Gerzon K, DeLong DC, Cline JC. C-nucleosides: aspects of chemistry and mode of action. Pure Appl Chem. 1971;28(4):489–97.

    CAS 
    PubMed 

    Google Scholar
     

  • 50.

    Koyama G, Maeda K, Umezawa H, Iitaka Y. The structural studies of formycin and formycin B. Tetrahedron Lett. 1966;7(6):597–602.


    Google Scholar
     

  • 51.

    Bouton J, Van Calenbergh S, Hullaert J. Sydnone ribosides as a platform for the synthesis of pyrazole C-nucleosides: a unified synthesis of formycin B and pyrazofurin. Org Lett. 2020;22(23):9287–91.

    CAS 
    PubMed 

    Google Scholar
     

  • 52.

    Gutowski GE, Sweeney MJ, DeLong DC, Hamill RL, Gerzon K, Dyke RW. Biochemistry and biological effects of the pyrazofurins (pyrazomycins): initial clinical trial. Ann N Y Acad Sci. 1975;255:544–51.

    CAS 
    PubMed 

    Google Scholar
     

  • 53.

    Hoffman DH, Sweeney MJ. Orotate phosphoribosyl transferase and orotidylic acid decarboxylase activities in liver and Morris hepatomas. Cancer Res. 1973;33(5):1109–12.

    CAS 
    PubMed 

    Google Scholar
     

  • 54.

    Cadman EC, Dix DE, Handschumacher RE. Clinical, biological, and biochemical effects of pyrazofurin. Cancer Res. 1978;38(3):682–8.

    CAS 
    PubMed 

    Google Scholar
     

  • 55.

    Olah E, Lui MS, Tzeng DY, Weber G. Phase and cell cycle specificity of pyrazofurin action. Cancer Res. 1980;40(8 Pt 1):2869–75.

    CAS 
    PubMed 

    Google Scholar
     

  • 56.

    Worzalla JF, Sweeney MJ. Pyrazofurin inhibition of purine biosynthesis via 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranosyl 5′-monophosphate formyltransferase. Cancer Res. 1980;40(5):1482–5.

    CAS 
    PubMed 

    Google Scholar
     

  • 57.

    Salem PA, Bodey GP, Burgess MA, Murphy WK, Freireich EJ. A phase I study of pyrazofurin. Cancer. 1977;40(6):2806–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 58.

    Rossi A. The clinical uses of nucleoside analogues in malignant disease. In: Walker RT, De Clercq E, Eckstein F, editors. Nucleoside analogues: chemistry, biology, and medical applications, vol. 26. Boston: Springer, US; 1979. p. 409–36.


    Google Scholar
     

  • 59.

    Cinatl J, Morgenstern B, Bauer G, Chandra P, Rabenau H, Doerr HW. Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. Lancet. 2003;361(9374):2045–6.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 60.

    Buchanan JG, Hamblin MR, Sood GR, Wightman RH. The biosynthesis of pyrazofurin and formycin. J Chem Soc Chem Commun. 1980;19:917–8.


    Google Scholar
     

  • 61.

    Zhao G, Yao S, Rothchild KW, Liu T, Liu Y, Lian J, et al. The biosynthetic gene cluster of pyrazomycin-A C-nucleoside antibiotic with a rare pyrazole moiety. ChemBioChem. 2020;21(5):644–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 62.

    Benner JP, Boehlendorf BGH, Kipps MR, et al. Biocidal compounds and their preparation. WIPO, WO2003GB00063. 2003.

  • 63.

    Hanessian S, Huang G, Chenel C, Machaalani R, Loiseleur O. Total synthesis of N-malayamycin A and related bicyclic purine and pyrimidine nucleosides. J Org Chem. 2005;70(17):6721–34.

    CAS 
    PubMed 

    Google Scholar
     

  • 64.

    Li W, Csukai M, Corran A, Crowley P, Solomon PS, Oliver RP. Malayamycin, a new streptomycete antifungal compound, specifically inhibits sporulation of Stagonospora nodorum (Berk) Castell and Germano, the cause of wheat glume blotch disease. Pest Manag Sci. 2008;64(12):1294–302.

    CAS 
    PubMed 

    Google Scholar
     

  • 65.

    O’Malley PA. Pseudouridimycin: light in the darkness of antimicrobial resistance. Clin Nurse Spec. 2018;32(3):114–5.

    PubMed 

    Google Scholar
     

  • 66.

    Maffioli SI, Sosio M, Ebright RH, Donadio S. Discovery, properties, and biosynthesis of pseudouridimycin, an antibacterial nucleoside-analog inhibitor of bacterial RNA polymerase. J Ind Microbiol Biotechnol. 2019;46(3–4):335–43.

    CAS 
    PubMed 

    Google Scholar
     

  • 67.

    Chellat MF, Riedl R. Pseudouridimycin: the first nucleoside analogue that selectively inhibits bacterial RNA polymerase. Angew Chem Int Ed. 2017;56(43):13184–6.

    CAS 

    Google Scholar
     

  • 68.

    Maffioli SI, Zhang Y, Degen D, Carzaniga T, Del Gatto G, Serina S, et al. Antibacterial nucleoside-analog inhibitor of bacterial RNA polymerase. Cell. 2017;169(7):1240-1248.e23.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 69.

    Rabbad AH, Agoni C, Olotu FA, Soliman ME. Microbes, not humans: exploring the molecular basis of pseudouridimycin selectivity towards bacterial and not human RNA polymerase. Biotechnol Lett. 2019;41(1):115–28.

    CAS 
    PubMed 

    Google Scholar
     

  • 70.

    Rabbad AH, Olotu FA, Soliman ME. Computer-aided structural and molecular insights into the mechanisms by which pseudouridimycin (PUM) disrupts cleft extension in bacterial RNA polymerase to block DNA entry and exit. Lett Drug Des Discov. 2021;18(6):542–50.

    CAS 

    Google Scholar
     

  • 71.

    Iorio M, Davatgarbenam S, Serina S, Criscenzo P, Zdouc MM, Simone M, et al. Blocks in the pseudouridimycin pathway unlock hidden metabolites in the Streptomyces producer strain. Sci Rep. 2021;11(1):5827.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 72.

    Bohringer N, Patras MA, Schaberle TF. Heterologous expression of pseudouridimycin and description of the corresponding minimal biosynthetic gene cluster. Molecules. 2021;26(2):510.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 73.

    Rosenqvist P, Palmu K, Prajapati RK, Yamada K, Niemi J, Belogurov GA, et al. Characterization of C-nucleoside antimicrobials from Streptomyces albus DSM 40763: strepturidin is pseudouridimycin. Cancer Res. 2019;9(1):8935.


    Google Scholar
     

  • 74.

    Draelos MM, Thanapipatsiri A, Sucipto H, Yokoyama K. Cryptic phosphorylation in nucleoside natural product biosynthesis. Nat Chem Biol. 2020;17(2):213–21.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 75.

    Wang Z-J, Zhou H, Zhong G, Huo L, Tang Y-J, Zhang Y, et al. Genome mining and biosynthesis of primary amine-acylated desferrioxamines in a marine gliding bacterium. Org Lett. 2020;22(3):939–43.

    CAS 
    PubMed 

    Google Scholar
     

  • 76.

    Kang H-S. Phylogeny-guided (meta)genome mining approach for the targeted discovery of new microbial natural products. J Ind Microbiol Biotechnol. 2017;44(2):285–93.

    CAS 
    PubMed 

    Google Scholar
     

  • 77.

    Zhang MM, Wong FT, Wang Y, Luo S, Lim YH, Heng E, et al. CRISPR–Cas9 strategy for activation of silent Streptomyces biosynthetic gene clusters. Nat Chem Biol. 2017;13(6):607–9.

    CAS 

    Google Scholar
     

  • 78.

    Pfeiffer M, Nidetzky B. Reverse C-glycosidase reaction provides C-nucleotide building blocks of xenobiotic nucleic acids. Nat Commun. 2020;11(1):6270.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 79.

    Leegwater E, Strik A, Wilms EB, Bosma LBE, Burger DM, Ottens TH, et al. Drug-induced liver injury in a patient with coronavirus disease 2019: potential interaction of remdesivir with P-glycoprotein inhibitors. Clin Infect Dis. 2020;72(7):1256–8.


    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)