• Arias A (1970) Measure of earthquake intensity. University of Chile, Santiago de Chile


    Google Scholar
     

  • Barlow J, Martin Y, Franklin SE (2003) Detecting translational landslide scars using segmentation of Landsat ETM+ and DEM data in the northern Cascade Mountains, British Columbia. Can J Remote Sens 29(4):510–517. https://doi.org/10.5589/m03-018

    Article 

    Google Scholar
     

  • Budimir MEA, Atkinson PM, Lewis HG (2014) Seismically induced landslide hazard and exposure modelling in Southern California based on the 1994 Northridge, California earthquake event. Landslides 12:895–910. https://doi.org/10.1007/s10346-014-0531-8

    Article 

    Google Scholar
     

  • Budimir MEA, Atkinson PM, Lewis HG (2015) A systematic review of landslide probability mapping using logistic regression. Landslide 12:419–436. https://doi.org/10.1007/s10346-014-0550-5

    Article 

    Google Scholar
     

  • Central Geological Survey (2000) 1:500,000 Taiwan geological map. Central Geological Survey, the Ministry of Economic Affair, Taipei


    Google Scholar
     

  • Chan CH, Ma KF, Shyu JBH, Lee YT, Wang YJ, Gao JC, Yen YT, Rau RJ (2020) Probabilistic seismic hazard assessment for Taiwan: TEM PSHA2020. Earthq Spectra 36:137–159. https://doi.org/10.1177/8755293020951587

    Article 

    Google Scholar
     

  • Chang KT, Chiang SH, Hsu ML (2007) Modeling typhoon- and earthquake-induced landslides in a mountainous watershed using logistic regression. Geomorphology 89:335–347. https://doi.org/10.1016/j.geomorph.2006.12.011

    Article 

    Google Scholar
     

  • Chen YC, Chang KT, Wang SF, Huang JC, Yu CK, Tu JY, Chu HJ, Liu CC (2019) Controls of preferential orientation of earthquake and rainfall-triggered landslides in Taiwan’s orogenic mountain belt. Earth Surf Process Landf 44:1661–1674. https://doi.org/10.1002/esp.4601

    Article 

    Google Scholar
     

  • Cheng SN, Yeh YT, Hsu MT, Shin TC (1999) Photo album of ten disastrous earthquakes in Taiwan. Central Weather Bureau and Insitute of Earth Science, Academia Sinica, Taipei


    Google Scholar
     

  • Chigira M, Wu X, Inokuchi T, Wang G (2010) Landslides induced by the 2008 Wenchuan earthquake, Sichuan, China. Geomorphology 118:225–238. https://doi.org/10.1016/j.geomorph.2010.01.003

    Article 

    Google Scholar
     

  • Chuang RY, Johnson KM, Wu YM, Ching KE, Kuo LC (2013) A midcrustal ramp-fault structure beneath the Taiwan tectonic wedge illuminated by the 2013 Nantou earthquake series. Geophys Res Lett 40:5080–5084. https://doi.org/10.1002/grl.51005

    Article 

    Google Scholar
     

  • Chuang RY, Lu CH, Yang CJ, Lin YS, Lee TY (2020) Coseismic uplift of the 1999 Mw7.6 Chi-Chi earthquake and implication to topographic change in frontal mountain belts. Geophys Res Lett 47:e2020GL088947. https://doi.org/10.1029/2020GL088947

    Article 

    Google Scholar
     

  • Chuang RY, Wu BS, Liu HC, Huang HH, Lu CH (2021) Development of a statistics-based nowcasting model for earthquake-triggered landslides in Taiwan. Eng Geol 289:106177. https://doi.org/10.1016/j.enggeo.2021.106177

    Article 

    Google Scholar
     

  • Dadson SJ, Hovius N, Chen H, Dade WB, Lin JC, Hsu ML, Lin CW, Horng MJ, Chen TC, Milliman J, Stark CP (2004) Earthquake-triggered increase in sediment delivery from an active mountain belt. Geology 32(8):733–736. https://doi.org/10.1130/G20639.1

    Article 

    Google Scholar
     

  • Dai FC, Xu C, Yao X, Xu L, Tu XB, Gong QM (2011) Spatial distribution of landslides triggered by the 2008 Ms8.0 Wenchuan earthquake. China J Asian Earth Sci 40:883–895. https://doi.org/10.1016/j.jseaes.2010.04.010

    Article 

    Google Scholar
     

  • Daniell JR, Schaefer AM, Wenzel F (2017) Losses associated with secondary effects in earthquakes. Front Built Environ 3:30. https://doi.org/10.3389/fbuil.2017.00030

    Article 

    Google Scholar
     

  • Deijns AAJ, Bevington AR, van Zadelhoff F, de Jong SM, Geertsema M, McDougall S (2020) Semi-automated detection of landslide timing using harmonic modelling of satellite imagery, Buckinghorse River, Canada. Int J Appl Earth Obs Geoinf 84:101943. https://doi.org/10.1016/j.jag.2019.101943

    Article 

    Google Scholar
     

  • Fan X, Scaringi G, Korup O, West AJ, van Wesen CJ, Tanyaş H, Hovius N, Hales TC, Jibson RW, Allstadt KE, Zhang L, Evans SG, Xu C, Li G, Pei X, Xu Q, Huang R (2019) Earthquake-induced chains of geologic hazards: patterns, mechanisms, and impacts. Rev Geophys 57(2):421–503. https://doi.org/10.1029/2018RG000626

    Article 

    Google Scholar
     

  • Gorum T, Fan X, van Westen CJ, Huang RQ, Xu Q, Tang C, Wang G (2011) Distribution pattern of earthquake-induced landslides triggered by the 12 May 2008 Wenchuan earthquake. Geomorphology 133:152–167. https://doi.org/10.1016/j.geomorph.2010.12.030

    Article 

    Google Scholar
     

  • Harp EL, Keefer DK, Sato HP, Yagi H (2011) Landslide inventories: the essential part of seismic hazard analyses. Eng Geol 122:9–12. https://doi.org/10.1016/j.enggeo.2010.06.013

    Article 

    Google Scholar
     

  • Hovius N, Maunier P, Lin CW, Chen H, Chen YG, Dadson S, Horng MJ, Lines M (2011) Prolonged seismically induced erosion and the mass balance of a large earthquake. Earth Planet Sci Lett 304:347–355. https://doi.org/10.1016/j.eps.2011.02.005

    Article 

    Google Scholar
     

  • Hsiao NC (2007) Establishment of ground motion prediction model. Report CWB96-1A-06. Central Weather Bureau Research, Taiwan


    Google Scholar
     

  • Huang TF, Lee CT (1999) Landslides triggered by the Jueili earthquake. Proceedings of the 1999 Annual Meeting of the Geological Society of China, Taipei


    Google Scholar
     

  • Huang AYL, Montgomery DR (2014) Topographic locations and size of earthquake- and typhoon-generated landslides, Tachia River. Taiwan Earth Surf Process Landf 39:414–418. https://doi.org/10.1002/esp.3510

    Article 

    Google Scholar
     

  • Huang JC, Milliman JD, Lee TY, Chen YC, Lee JF, Liu CC, Lin JC, Kao SJ (2017) Terrain attributes of earthquake- and rainstorm-induced landslides in orogenic mountain belt. Taiwan Earth Surf Process Landf 42:1549–1559. https://doi.org/10.1002/esp.4112

    Article 

    Google Scholar
     

  • Kargel JS, Leonard GJ, Shugar DH, Haritashya UK, Bevington A, Fielding EJ, Fujita K, Geertsema M, Miles ES, Steiner J, Anderson E, Bajracharya S, Bawden GW, Breashears DF, Byers A, Collins B, Dhital MR, Donnellan A, Evans TL, Geai ML, Glasscoe MT, Green D, Gurung DR, Heijenk R, Hilborn A, Hudnut K, Huyck C, Immerzeel WW, Liming J, Jibson R, Kaab A, Khanal NR, Kirschbaum D, Kraaijenbrink PDA, Lamsal D, Shiyin L, Mingyang L, McKinney D, Nahirnick NK, Zhuotong N, Ojha S, Olsenholler J, Painter TH, Pleasants M, Pratima KC, Yuan QI, Raup BH, Regmi D, Rounce DR, Sakai A, Donghui S, Shea JM, Shrestha AB, Shukla A, Stumm D, van der Kooij M, Voss K, Xin W, Weihs B, Wolfe D, Lizong W, Xiaojun Y, Yoder MR, Young N (2016) Geomorphic and geologic controls of gehazards induced by Nepal’s 2015 Gorkha earthquake. Science 351(6269):aac8353. https://doi.org/10.1126/science.aac8353

    Article 

    Google Scholar
     

  • Keefer DK (1984) Landslides caused by earthquakes. Geol Soc Am Bull 95:406–421. https://doi.org/10.1023/A:1021274710840

    Article 

    Google Scholar
     

  • Keefer DK (1994) The importantce of earthquake-induced landslides to long-term slope erosion and slope failure hazards in seismically active regions. Geology 10:265–285. https://doi.org/10.1016/B978-0-444-82012-9.50022-0

    Article 

    Google Scholar
     

  • Keefer DK (2002) Investigating landslides caused by earthquakes—a historical review. Surv Geophys 23:473–510. https://doi.org/10.1023/A:1021274710840

    Article 

    Google Scholar
     

  • Khazai B, Sitar N (2004) Evaluation of factors controlling earthquake-induced landslides caused by Chi-Chi earthquake and comparison with Northridge and Loma Prieta events. Eng Geol 71:79–95. https://doi.org/10.1016/S0013-7952(03)00127-3

    Article 

    Google Scholar
     

  • Larsen IJ, Montgomery DR, Korup O (2010) Landslide erosion controlled by hillslope material. Nat Geosci 3:247–251. https://doi.org/10.1038/ngeo776

    Article 

    Google Scholar
     

  • Lee CT (2013) Re-evaluation of factors controlling landslides triggered by the 1999 Chi-Chi earthquake. In: Ugai K, Yagi H, Wakai A (eds) Earthquake-induced landslides. Springer, Berlin, pp 213–224

    Chapter 

    Google Scholar
     

  • Lee CT, Fei LY (2015) Nationwide landslide hazard analysis and mapping in Taiwan. Eng Geology Soc Territ 2:971–974. https://doi.org/10.1007/978-3-319-09057-3_169

    Article 

    Google Scholar
     

  • Lee CT, Huang CC, Lee JF, Pan KL, Lin ML, Dong JJ (2008) Statistical approach to earthquake-induced landslide susceptibility. Eng Geology 100:43–58. https://doi.org/10.1016/j.enggeo.2008.03.004

    Article 

    Google Scholar
     

  • Lee SJ, Yeh TY, Huang HH, Lin CH (2015) Numerical earthquake models of the 2013 Nantou, Taiwan, earthquake series: characteristics of source rupture processes, strong ground motions and their tectonic implication. J Asian Earth Sci 111:365–372. https://doi.org/10.1016/j.jseaes.2015.06.031

    Article 

    Google Scholar
     

  • Liao HW, Lee CT (2000) Landslide triggered by the Chi-Chi earthquake. Proceedings of the 21st Asian Conference on Remote Sensing, Taipei


    Google Scholar
     

  • Lin ML, Tung CC (2004) A GIS-based potential analysis of the landslides induced by the Chi-Chi earthquake. Eng Geol 71:63–77. https://doi.org/10.1016/S0013-7952(03)00126-1

    Article 

    Google Scholar
     

  • Lin SC, Ke MC, Lo CM (2017) Evolution of landslide hotspots in Taiwan. Landslides 14:1491–1501. https://doi.org/10.1007/s10346-017-0816-9

    Article 

    Google Scholar
     

  • Malamud BD, Turcotte DL, Guzzetti F, Reichenbach P (2004) Landslide, earthquakes, and erosion. Earth Planet Sci Lett 229:45–59. https://doi.org/10.1016/j.epsl.2004.10.018

    Article 

    Google Scholar
     

  • Mantovani F, Soeters R, Van Westen CJ (1996) Remote sensing techniques for landslide studies and hazard zonation in Europe. Geomorphology 15(3):213–225. https://doi.org/10.1016/0169-555X(95)00071-C

    Article 

    Google Scholar
     

  • Marano KD, Wald DJ, Allen TI (2009) Global earthquake casualties due to secondary effects: a quantitative analysis for improving rapid loss analyses. Nat Hazards 52(2):319–328. https://doi.org/10.1007/s11069-009-9372-5

    Article 

    Google Scholar
     

  • Marc O, Hovius N, Meunier P, Uchida T, Hayashi S (2015) Transient changes of landslide rates after earthquakes. Geology 43:883–886. https://doi.org/10.1130/G36961.1

    Article 

    Google Scholar
     

  • Marcelino EV, Formaggio AR, Maeda EE (2009) Landslide inventory using image fusion techniques in Brazil. Int J Appl Earth Obs Geoinf 11(3):181–191. https://doi.org/10.1016/j.jag.2009.01.003

    Article 

    Google Scholar
     

  • Meunier P, Hovius N, Haines AJ (2007) Regional patterns of earthquake-triggered landslides and their relation to ground motion. Geophys Res Lett 34:L20408. https://doi.org/10.1029/2007GL031337

    Article 

    Google Scholar
     

  • Meunier P, Hovius N, Haines JA (2008) Topographic site effects and the location of earthquake induced landslides. Earth Planet Sci Lett 275:221–232. https://doi.org/10.1016/j.espl.2008.07.020

    Article 

    Google Scholar
     

  • Meunier P, Uchida T, Hovius N (2013) Landslide patterns reveal the sources of large earthquakes. Earth Planet Sci Lett 363:27–33. https://doi.org/10.1016/j.epsl.2012.12.018

    Article 

    Google Scholar
     

  • Nadim F, Kjekstad O, Peduzzi P, Herold C, Jaedicke C (2006) Global landslide and avalanche hotspot. Landslides 3(2):159–173. https://doi.org/10.1007/s10346-006-0036-1

    Article 

    Google Scholar
     

  • Nowicki MA, Wald DJ, Hamburger MW, Hearne M, Thompson EM (2014) Development of a globally applicable model for near real-time prediction of seismically induced landslides. Eng Geol 173:54–65. https://doi.org/10.1016/j.enggeo.2014.02.002

    Article 

    Google Scholar
     

  • Nowicki Jessee MA, Hamburger MW, Allstadt K, Wald DJ, Robeson SM, Tanyaş H, Hearne M, Thompson EM (2018) A global empirical model for near-real-time assessment of seismically induced landslides. J Geophys Res Earth Surface 123:1835–1859. https://doi.org/10.1029/2017JF004494

    Article 

    Google Scholar
     

  • Nowicki Jessee MA, Hamburger MW, Rerrara MR, McLean A, FitzGerald C (2020) A global dataset and model of earthquake-induced landslide fatalities. Landslides 17:1363–1376. https://doi.org/10.1007/s10346-020-01356-z

    Article 

    Google Scholar
     

  • Rodriguez CE, Bommer JJ, Chandler RJ (1999) Earthquake-induced landslides: 1980–1997. Soil Dyn Earthq Eng 18:325–346. https://doi.org/10.1016/S0267-7261(99)00012-3

    Article 

    Google Scholar
     

  • Sato HP, Hasegawa H, Fujiwara S, Tobita M, Koarai M, Une H, Iwahashi J (2007) Interpretation of landslide distribution triggered by the 2005 Northern Pakistan earthquake using SPOT 5 imagery. Landslides 4:113–122. https://doi.org/10.1007/s10346-006-0069-5

    Article 

    Google Scholar
     

  • Schimitt RG, Tanyaş H, Nowicki Jessee MA, Zhu J, Biegel KM, Allstadt KE, Jibson RW, Thompson EM, van Westen CJ, Sato HP, Wald DJ, Godt JW, Gorum T, Xu C, Rathje EM, Knudsen KL (2017) An open repository of earthquake-triggered ground-failure inventories. US Geological Survey Data Series, 1064, Reston, p 17. https://doi.org/10.3133/ds1064

    Book 

    Google Scholar
     

  • Shyu JBH, Sieh K, Chen YG, Liu CS (2005) Neotectonic architecture of Taiwan and its implications for future large earthquakes. J Geophys Res 110:B08402. https://doi.org/10.1029/2004JB003251

    Article 

    Google Scholar
     

  • Shyu JBH, Yin YH, Chen CH, Chuang YR, Liu SC (2020) Updates to the on-land seismogenic structure source database by the Taiwan Earthquake Model (TEM) project for seismic hazard analysis of Taiwan. Terr Atmos Ocean Sci 31:469–478. https://doi.org/10.3319/TAO.2015.11.27.02

    Article 

    Google Scholar
     

  • Tanyaş H, Lombardo L (2019) Variation in landslide-affected area under the control of ground motion and topography. Eng Geol 260:105229. https://doi.org/10.1016/j.enggeo.2019.105229

    Article 

    Google Scholar
     

  • Tanyaş H, van Westen CJ, Allstadt KE, Nowicki Jessee MA, Görüm T, Jibson RW, Godt JW, Sato HP, Schimitt RG, Marc O, Hovius N (2017) Presentation and analysis of a worldwide database of earthquake-induced landslide inventories. J Geophys Res Earth Surf 122:1991–2015. https://doi.org/10.1002/2017JF004236

    Article 

    Google Scholar
     

  • Tibaldi A, Ferrari L, Pasquare G (1995) Landslides triggered by earthquakes and their relations with faults and mountain slope geometry: an example from Ecuador. Geomorphology 11:215–226. https://doi.org/10.1016/0169-555X(94)00060-5

    Article 

    Google Scholar
     

  • van Westen CJ, van Asch TWJ, Soeters R (2006) Landslide hazard and risk zonation-why is it still so difficult? Bull Eng Geol Env 65:167–184. https://doi.org/10.1007/s10064-005-0023-0

    Article 

    Google Scholar
     

  • Wen YY, Miyake H, Yen YT, Irikura K, Ching KE (2014) Rupture directivity effect and stress heterogeneity of the 2013 Nantou blind-thrust earthquakes. Taiwan Bull Seismo Soc Am 104:2933–2942. https://doi.org/10.1785/0120140109

    Article 

    Google Scholar
     

  • Wu YM, Chang CH, Zhao L, Teng TL, Nakamura M (2008) A comprehensive relocation of earthquakes in Taiwan from 1991 to 2005. Bull Seismo Soc Am 98:1471–1481. https://doi.org/10.1785/0120070166

    Article 

    Google Scholar
     

  • Yagi H, Sato G, Higaki D, Yamamoto M, Yamasaki T (2009) Distribution and characteristics of landslides induced by the Iwate-Miyagi Nairiku Earthquake in 2008 in Tohoku District, Northeast Japan. Landslides 6:335. https://doi.org/10.1007/s10346-009-0182-3

    Article 

    Google Scholar
     

  • Yang M, Tseng CL, Yu JY (2001) Establishment and maintenance of Taiwan geodetic datum 1997. J Surv Eng 127(4):119–132. https://doi.org/10.1061/(ASCE)0733-9453(2001)127:4(119)

    Article 

    Google Scholar
     

  • Yu B, Chen F, Xu C (2020) Landslide detection based on contour-based deep learning framework in case of national scale of Nepal in 2015. Comput Geosci 135:104388. https://doi.org/10.1016/j.cageo.2019.104388

    Article 

    Google Scholar
     

  • Zhao B, Li W, Wang Y, Lu J, Li X (2019) Landslides triggered by the Ms 6.9 Nyingchi earthquake, China (18 November 2017): analysis of the spatial distribution and occurrence factors. Landslides 16:765–776. https://doi.org/10.1007/s10346-019-01146-2

    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.springeropen.com/)