• Abbas ST, Sarfraz M, Mehdi SM, Hassan G (2007) Trace elements accumulation in soil and rice plants irrigated with the contaminated water. Soil Tillage Res 94:503–509


    Google Scholar
     

  • Alam MGM, Snow ET, Tanaka A (2003) Arsenic and heavy metal contamination of vegetables grown in Samta village, Bangladesh. Sci Total Environ 308:83–96

    CAS 
    ADS 
    PubMed 

    Google Scholar
     

  • Alfaifi H, El-Sorogy AS, Qaysi S, Kahal A, Almadani S, Alshehri F, Zaidi FK (2021) Evaluation of heavy metal contamination and groundwater quality along the Red Sea coast, southern Saudi Arabia. Mar Pollut Bull 163:111975

    CAS 
    PubMed 

    Google Scholar
     

  • Asa SC, Rath P, Panda UC, Parhi PK, Bramha S (2013) Application of sequential leaching, risk indices and multivariate statistics to evaluate heavy metal contamination of estuarine sediments: Dhamara Estuary, East Coast of India. Environ Monit Assess 185(8):6719–6737

    CAS 
    PubMed 

    Google Scholar
     

  • Banerjee ADK (2003) Heavy metal levels and solid phase speciation in street dusts of Delhi, Delhi. Environ Pollut 123:95–105

    CAS 
    PubMed 

    Google Scholar
     

  • Bramha SN, Mohanty AK, Satpathy KK, Kanagasabapathy KV, Panigrahi S, Samantara MK, Prasad MVR (2014) Heavy metal content in the beach sediment with respect to contamination levels and sediment quality guidelines: a study at Kalpakkam coast, southeast coast of India. Environ Earth Sci 72(11):4463–4472

    CAS 

    Google Scholar
     

  • Bryan GW, Langston WJ (1992) Bioavailability, accumulation and effects of heavy metals in sediments with special reference to United Kingdom estuaries: a review. Environ Pollut 76(2):89–131

    CAS 
    PubMed 

    Google Scholar
     

  • Chai M, Li R, Tam NFY, Zan Q (2019) Effects of mangrove plant species on accumulation of heavy metals in sediment in a heavily polluted mangrove swamp in Pearl River Estuary, China. Environ Geochem Health 41(1):175–189

    CAS 
    PubMed 

    Google Scholar
     

  • Chandrasekaran A, Rajalakshmi A, Ravisankar R, Vijayagopal P, Venkatraman B (2015) Measurements of natural gamma radiations and effects of physico-chemical properties in soils of Yelagiri hills, Tamilnadu India with statistical approach. Procedia Earth Planet Sci 11:531–538

    CAS 
    ADS 

    Google Scholar
     

  • Cihlar J (2000) Land cover mapping of large areas from satellites: status and research priorities. Int J Remote Sens 21(6–7):1093–1114


    Google Scholar
     

  • Del Mastro AM, Londonio A, Rebagliati RJ, Pereyra M, Dawidowski L, Gómez D, Smichowski P (2015) Plasma-based techniques applied to the determination of 17 elements in partitioned top soils. Microchem J 123:224–229


    Google Scholar
     

  • ELTurk M, Abdullah R, Zakaria RM, Bakar NKA (2019) Heavy metal contamination in mangrove sediments in Klang estuary, Malaysia: implication of risk assessment. Estuar Coast Shelf Sci 226:106266

    CAS 

    Google Scholar
     

  • Feng Peng F, Song YH, Yuan P, Cui X, Qiu G (2009) The remediation of heavy metals contaminated sediment. Hazard Mater 161:633–640


    Google Scholar
     

  • Feng J, Zhu X, Wu H, Ning C, Lin G (2017) Distribution and ecological risk assessment of heavy metals in surface sediments of a typical restored mangrove–aquaculture wetland in Shenzhen, China. Mar Pollut Bull 124(2):1033–1039

    CAS 
    PubMed 

    Google Scholar
     

  • Fletcher DE, Lindell AH, Seaman JC, Stankus PT, Fletcher ND, Barton CD, Biemiller RA, McArthur JV (2019) Sediment and biota trace element distribution in streams disturbed by upland industrial activity. Environ Toxicol Chem 38:115–131

    CAS 
    PubMed 

    Google Scholar
     

  • Ganugapenta S, Nadimikeri J, Chinnapolla SRRB, Ballari L, Madiga R, Nirmala K, Tella LP (2018) Assessment of heavy metal pollution from the sediment of Tupilipalem Coast, southeast coast of India. Int J Sedim Res 33(3):294–302


    Google Scholar
     

  • Harbison PAT (1986) Mangrove muds—a sink and a source for trace metals. Mar Pollut Bull 17(6):246–250

    CAS 

    Google Scholar
     

  • He B, Yun Z, Shi J, Jiang G (2013) Research progress of heavy metal pollution in China: Sources, analytical methods, status, and toxicity. Chin Sci Bull 58(2):134–140

    CAS 

    Google Scholar
     

  • Hoch M (2001) Organotin compounds in the environment—an overview. Appl Geochem 16(7–8):719–743

    CAS 

    Google Scholar
     

  • Islam MA, Al-Mamun A, Hossain F, Quraishi SB, Naher K, Khan R, Das S, Tamim U, Hossain SM, Nahid F (2017) Contamination and ecological risk assessment of trace elements in sediments of the rivers of Sundarban mangrove forest, Bangladesh. Mar Pollut Bull 124:356–366

    CAS 
    PubMed 

    Google Scholar
     

  • Khan AG, Kuek C, Chaudhry TM, Khoo CS, Hayes WJ (2000) Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere 41(1–2):197–207

    CAS 
    ADS 
    PubMed 

    Google Scholar
     

  • Krishna AK, Govil PK (2004) Heavy metal contamination of soil around Pali industrial area, Rajasthan, India. Environ Geol 47:38–44

    CAS 

    Google Scholar
     

  • Krishna AK, Govil PK (2008) Assessment of heavy metal contamination in soils around Manali industrial area, Chennai, Southern India. Environ Geol 54:1465–1472

    CAS 
    ADS 

    Google Scholar
     

  • Krishna AK, Mohan KR, Murthy NN, Periasamy V, Bipinkumar G, Manohar K, Rao SS (2013) Assessment of heavy metal contamination in soils around chromite mining areas, Nuggihalli, Karnataka, India. Environ Earth Sci 70:699–708

    CAS 

    Google Scholar
     

  • Li X, Yeh AG-O (2000) Modelling sustainable urban development by the integration of constrained cellular automata and GIS. Int J Geogr Inf Sci 14(2):131–152

    ADS 

    Google Scholar
     

  • McGrath SP, Zhao FJ, Lombi E (2001) Plant and rhizosphere processes involved in phytoremediation of metal-contaminated soils. Plant Soil 232:207–214

    CAS 

    Google Scholar
     

  • Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8(3):199–216

    CAS 

    Google Scholar
     

  • Nasehi F, Hassani AH, Monavvari M, Karbassi AR, Khorasani N (2013) Evaluating the metallic pollution of riverine water and sediments: a case study of Aras River. Environ Monit Assess 185(1):197–203

    CAS 
    PubMed 

    Google Scholar
     

  • Pandey J, Pandey U (2009) Accumulation of heavy metals in dietary vegetables and cultivated soil horizon in organic farming system in relation to atmospheric deposition in a seasonally dry tropical region of India. Environ Monit Assess 148:61–74

    CAS 
    PubMed 

    Google Scholar
     

  • Parth V, Murthy NN, Saxena PR (2011) Assessment of heavy metal contamination in soil around hazardous waste disposal sites in Hyderabad city (India): natural and anthropogenic implications. J Environ Res Manag 2(2):027–034


    Google Scholar
     

  • Petrelli M, Laeger K, Perugini D (2016) High spatial resolution trace element determination of geological samples by laser ablation quadrupole plasma mass spectrometry: Implications for glass analysis in volcanic products. Geosci J 20(6):851–863. https://doi.org/10.1007/s12303-016-0007-z

    CAS 
    Article 

    Google Scholar
     

  • Prakash V, Narayana Y, Saxena M, Deb S, Nagar B, Ramakumar K (2011) Study of transfer of trace elements from soil to medicinal plants in the environment of Mangalore. J Radioanal Nucl Chem 290:103–107

    CAS 

    Google Scholar
     

  • Rattan RK, Datta SP, Chhonkar PK, Suribabu K, Singh AK (2005) Long-term impact of irrigation with sewage effluents on heavy metal content in soils, crops and groundwater—a case study. Agric Ecosyst Environ 109:310–322

    CAS 

    Google Scholar
     

  • Ray AK, Tripathy SC, Patra S, Sarma VV (2006) Assessment of Godavari estuarine mangrove ecosystem through trace metal studies. Environ Int 32(2):219–223

    CAS 
    PubMed 

    Google Scholar
     

  • Ribeiro C, Couto C, Ribeiro AR, Maia AS, Santos M, Tiritan ME, Pinto E, Almeida AA (2018) Distribution and environmental assessment of trace elements contamination of water, sediments and flora from Douro River estuary, Portugal. Sci Total Environ 639:1381–1393

    CAS 
    ADS 
    PubMed 

    Google Scholar
     

  • Rigaud S, Radakovitch O, Couture R-M, Deflandre B, Cossa D, Garnier C, Garnier J-M (2013) Mobility and fluxes of trace elements and nutrients at the sediment–water interface of a lagoon under contrasting water column oxygenation conditions. Appl Geochem 31:35–51

    CAS 

    Google Scholar
     

  • Ross SM (1994) Toxic metals in soil-plant systems. Wiley, Chichester


    Google Scholar
     

  • Santos IR, Silva-Filho EV, Schaefer CE, Albuquerque-Filho MR, Campos LS (2005) Heavy metal contamination in coastal sediments and soils near the Brazilian Antarctic Station, King George Island. Mar Pollut Bull 50(2):185–194

    CAS 
    PubMed 

    Google Scholar
     

  • Sayooj VV, Vineethkumar V, Ramesh S, Prakash V (2020) Dynamics of heavy metal accumulation in an endosulfan affected area of Kasaragod district, southwest coast of India. Radiat Prot Environ 43:44


    Google Scholar
     

  • Seaward MRD, Richardson DHS (1989) Atmospheric sources of metal pollution and effects on vegetation. In: Heavy metal tolerance in plants: evolutionary aspects, pp 75–92

  • Sekabira K, Origa HO, Basamba TA, Mutumba G, Kakudidi E (2010) Assessment of heavy metal pollution in the urban stream sediments and its tributaries. Int J Environ Sci Technol 7(3):435–446

    CAS 

    Google Scholar
     

  • Sharma OP, Bangar KS, Jain R, Sharma PK (2004) Heavy metals accumulation in soils irrigated by municipal and industrial effluent. J Environ Sci Eng 46:65–73

    CAS 
    PubMed 

    Google Scholar
     

  • Sheela AM, Letha J, Joseph S, Thomas J (2012) Assessment of heavy metal contamination in coastal lake sediments associated with urbanization: Southern Kerala, India. Lakes Reserv Res Manag 17(2):97–112

    CAS 

    Google Scholar
     

  • Sin SN, Chua H, Lo W, Ng LM (2001) Assessment of heavy metal cations in sediments of Shing Mun River, Hong Kong. Environ Int 26(5–6):297–301

    CAS 
    PubMed 

    Google Scholar
     

  • Sivakumar S, Chandrasekaran A, Balaji G, Ravisankar R (2016) Assessment of heavy metal enrichment and the degree of contamination in coastal sediment from South East Coast of Tamilnadu, India. J Heavy Met Toxic Dis 1(2):1–8


    Google Scholar
     

  • Tam NFY, Wong YS (1996) Retention and distribution of heavy metals in mangrove soils receiving wastewater. Environ Pollut 94(3):283–291

    CAS 
    PubMed 

    Google Scholar
     

  • Tam NF, Wong Y-S (1997) Accumulation and distribution of heavy metals in a simulated mangrove system treated with sewage. In: Asia-Pacific conference on science and management of coastal environment, pp 67–75

  • Tholkappian M, Ravisankar R, Chandrasekaran A, Jebakumar JPP, Kanagasabapathy KV, Prasad MVR, Satapathy KK (2018) Assessing heavy metal toxicity in sediments of Chennai Coast of Tamil Nadu using Energy Dispersive X-Ray Fluorescence Spectroscopy (EDXRF) with statistical approach. Toxicol Rep 5:173–182

    CAS 
    PubMed 

    Google Scholar
     

  • Tokman N, Akman S, Ozeroglu C (2004) Determination of lead, copper and manganese by graphite furnace atomic absorption spectrometry after separation/concentration using a water-soluble polymer. Talanta 63(3):699–703

    CAS 
    PubMed 

    Google Scholar
     

  • Turkian KK, Wedpohl KH (1961) World geochemical background value in average shale for metals in stream sediments. Geol Soc Am Bull 72:175–191


    Google Scholar
     

  • Veerasingam S, Venkatachalapathy R, Ramkumar T (2012) Heavy metals and ecological risk assessment in marine sediments of Chennai, India. Carpathian J Earth Environ Sci 7(2):111–124


    Google Scholar
     

  • Veeresh H, Tripathy S, Chaudhuri D, Hart BR, Powell MA (2003) Competitive adsorption behavior of selected heavy metals in three soil types of India amended with fly ash and sewage sludge. Environ Geol 44:363–370

    CAS 

    Google Scholar
     

  • Vineethkumar V, Sayooj VV, Shimod KP, Prakash V (2020) Estimation of pollution indices and hazard evaluation from trace elements concentration in coastal sediments of Kerala, Southwest Coast of India. Bull Natl Res Centre 44(1):198. https://doi.org/10.1186/s42269-020-00455-0

    Article 

    Google Scholar
     

  • Wang Q, Hong H, Yang D, Li J, Chen S, Pan C, Lu H, Liu J, Yan C (2020) Health risk assessment of heavy metal and its mitigation by glomalin-related soil protein in sediments along the South China coast. Environ Pollut 263:114565

    PubMed 

    Google Scholar
     

  • Zhao G, Lu Q, Ye S, Yuan H, Ding X, Wang J (2016) Assessment of heavy metal contamination in surface sediments of the west Guangdong coastal region, China. Mar Pollut Bull 108:268–274. https://doi.org/10.1016/j.marpolbul.2016.04.057

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.springeropen.com/)