• 1.

    Ezzat S, Asa SL, Couldwell WT, Barr CE, Dodge WE, Vance ML, et al. The prevalence of pituitary adenomas: a systematic review. Cancer. 2004;101(3):613–9.

    Article 

    Google Scholar
     

  • 2.

    Mayson SE, Snyder PJ. Silent pituitary adenomas. Endocrinol Metab Clin N Am. 2015;44(1):79–87.

    Article 

    Google Scholar
     

  • 3.

    Suri H, Dougherty C. Clinical presentation and management of headache in pituitary tumors. Curr Pain Headache Rep. 2018;22(8):55.

    Article 

    Google Scholar
     

  • 4.

    Cote DJ, Smith TR, Sandler CN, Gupta T, Bale TA, Bi WL, et al. Functional gonadotroph adenomas: case series and report of literature. Neurosurgery. 2016;79(6):823–31.

    Article 

    Google Scholar
     

  • 5.

    Heaney A. Management of aggressive pituitary adenomas and pituitary carcinomas. J Neuro-Oncol. 2014;117(3):459–68.

    Article 
    CAS 

    Google Scholar
     

  • 6.

    Ajlan AM, Harsh GR. Functional pituitary adenoma recurrence after surgical resection. World Neurosurg. 2014;81(3–4):494–6.

    Article 

    Google Scholar
     

  • 7.

    Chung C. Restoring the switch for cancer cell death: targeting the apoptosis signaling pathway. Am J Health Syst Pharm. 2018;75(13):945–52.

    Article 
    CAS 

    Google Scholar
     

  • 8.

    Kundrat P, Friedland W. Impact of intercellular induction of apoptosis on low-dose radiation carcinogenesis. Radiat Prot Dosim. 2015;166(1–4):170–3.

    Article 
    CAS 

    Google Scholar
     

  • 9.

    Mkandawire MM, Lakatos M, Springer A, Clemens A, Appelhans D, Krause-Buchholz U, et al. Induction of apoptosis in human cancer cells by targeting mitochondria with gold nanoparticles. Nanoscale. 2015;7(24):10634–40.

    Article 
    CAS 

    Google Scholar
     

  • 10.

    Tavakoli-Yaraki M, Karami-Tehrani F, Salimi V, Sirati-Sabet M. Induction of apoptosis by Trichostatin A in human breast cancer cell lines: involvement of 15-Lox-1. Tumour Biol. 2013;34(1):241–9.

    Article 
    CAS 

    Google Scholar
     

  • 11.

    Lee SY, Ju MK, Jeon HM, Jeong EK, Lee YJ, Kim CH, et al. Regulation of tumor progression by programmed necrosis. Oxidative Med Cell Longev. 2018;2018:3537471.


    Google Scholar
     

  • 12.

    Le Cann F, Delehouze C, Leverrier-Penna S, Filliol A, Comte A, Delalande O, et al. Sibiriline, a new small chemical inhibitor of receptor-interacting protein kinase 1, prevents immune-dependent hepatitis. FEBS J. 2017;284(18):3050–68.

    Article 
    CAS 

    Google Scholar
     

  • 13.

    Deepa SS, Unnikrishnan A, Matyi S, Hadad N, Richardson A. Necroptosis increases with age and is reduced by dietary restriction. Aging Cell. 2018;17(4):e12770.

    Article 
    CAS 

    Google Scholar
     

  • 14.

    Belizario J, Vieira-Cordeiro L, Enns S. Necroptotic cell death signaling and execution pathway: lessons from knockout mice. Mediat Inflamm. 2015;2015:128076.

    Article 
    CAS 

    Google Scholar
     

  • 15.

    Grootjans S, Vanden Berghe T, Vandenabeele P. Initiation and execution mechanisms of necroptosis: an overview. Cell Death Differ. 2017;24(7):1184–95.

    Article 
    CAS 

    Google Scholar
     

  • 16.

    Karami-Tehrani F, Malek AR, Shahsavari Z, Atri M. Evaluation of RIP1K and RIP3K expressions in the malignant and benign breast tumors. Tumour Biol. 2016;37(7):8849–56.

    Article 
    CAS 

    Google Scholar
     

  • 17.

    Shahsavari Z, Karami-Tehrani F, Salami S, Ghasemzadeh M. RIP1K and RIP3K provoked by shikonin induce cell cycle arrest in the triple negative breast cancer cell line, MDA-MB-468: necroptosis as a desperate programmed suicide pathway. Tumour Biol. 2016;37(4):4479–91.

    Article 
    CAS 

    Google Scholar
     

  • 18.

    Lu B, Gong X, Wang ZQ, Ding Y, Wang C, Luo TF, et al. Shikonin induces glioma cell necroptosis in vitro by ROS overproduction and promoting RIP1/RIP3 necrosome formation. Acta Pharmacol Sin. 2017;38(11):1543–53.

    Article 
    CAS 

    Google Scholar
     

  • 19.

    Fu Z, Deng B, Liao Y, Shan L, Yin F, Wang Z, et al. The anti-tumor effect of shikonin on osteosarcoma by inducing RIP1 and RIP3 dependent necroptosis. BMC Cancer. 2013;13:580.

    Article 
    CAS 

    Google Scholar
     

  • 20.

    Saraga-Babic M, Bazina M, Vukojevic K, Bocina I, Stefanovic V. Involvement of pro-apoptotic and anti-apoptotic factors in the early development of the human pituitary gland. Histol Histopathol. 2008;23(10):1259–68.

    PubMed 
    CAS 

    Google Scholar
     

  • 21.

    Kontogeorgos G. Predictive markers of pituitary adenoma behavior. Neuroendocrinology. 2006;83(3–4):179–88.

    Article 
    CAS 

    Google Scholar
     

  • 22.

    Ozer E, Canda MS, Ulukus C, Guray M, Erbayraktar S. Expression of Bcl-2, Bax and p53 proteins in pituitary adenomas: an immunohistochemical study. Tumori. 2003;89(1):54–9.

    Article 

    Google Scholar
     

  • 23.

    Sambaziotis D, Kapranos N, Kontogeorgos G. Correlation of bcl-2 and bax with apoptosis in human pituitary adenomas. Pituitary. 2003;6(3):127–33.

    Article 
    CAS 

    Google Scholar
     

  • 24.

    Barooni AB, Ghorbani M, Salimi V, Alimohammadi A, Khamseh ME, Akbari H, et al. Up-regulation of 15-lipoxygenase enzymes and products in functional and non-functional pituitary adenomas. Lipids Health Dis. 2019;18(1):152.

    Article 
    CAS 

    Google Scholar
     

  • 25.

    Shirian FI, Ghorbani M, Khamseh ME, Imani M, Panahi M, Alimohammadi A, et al. Up-regulation of sex-determining region Y-box 9 (SOX9) in growth hormone-secreting pituitary adenomas. BMC Endocr Disord. 2021;21(1):50.

    Article 
    CAS 

    Google Scholar
     

  • 26.

    Mirzaei A, Tavoosidana G, Rad AA, Rezaei F, Tavakoli-Yaraki M, Kadijani AA, et al. A new insight into cancer stem cell markers: could local and circulating cancer stem cell markers correlate in colorectal cancer? Tumour Biol. 2016;37(2):2405–14.

    Article 
    CAS 

    Google Scholar
     

  • 27.

    Guzzo MF, Carvalho LR, Bronstein MD. Apoptosis: its role in pituitary development and neoplastic pituitary tissue. Pituitary. 2014;17(2):157–62.

    Article 
    CAS 

    Google Scholar
     

  • 28.

    Wang Q, Chen W, Xu X, Li B, He W, Padilla MT, et al. RIP1 potentiates BPDE-induced transformation in human bronchial epithelial cells through catalase-mediated suppression of excessive reactive oxygen species. Carcinogenesis. 2013;34(9):2119–28.

    Article 
    CAS 

    Google Scholar
     

  • 29.

    Liu XY, Lai F, Yan XG, Jiang CC, Guo ST, Wang CY, et al. RIP1 kinase is an oncogenic driver in melanoma. Cancer Res. 2015;75(8):1736–48.

    Article 
    CAS 

    Google Scholar
     

  • 30.

    Park S, Hatanpaa KJ, Xie Y, Mickey BE, Madden CJ, Raisanen JM, et al. The receptor interacting protein 1 inhibits p53 induction through NF-kappaB activation and confers a worse prognosis in glioblastoma. Cancer Res. 2009;69(7):2809–16.

    Article 
    CAS 

    Google Scholar
     

  • 31.

    de Almagro MC, Vucic D. Necroptosis: pathway diversity and characteristics. Semin Cell Dev Biol. 2015;39:56–62.

    Article 
    CAS 

    Google Scholar
     

  • 32.

    Koo GB, Morgan MJ, Lee DG, Kim WJ, Yoon JH, Koo JS, et al. Methylation-dependent loss of RIP3 expression in cancer represses programmed necrosis in response to chemotherapeutics. Cell Res. 2015;25(6):707–25.

    Article 
    CAS 

    Google Scholar
     

  • 33.

    Kim SK, Kim WJ, Yoon JH, Ji JH, Morgan MJ, Cho H, et al. Upregulated RIP3 expression potentiates MLKL phosphorylation-mediated programmed necrosis in toxic epidermal necrolysis. J Invest Dermatol. 2015;135(8):2021–30.

    Article 
    CAS 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)