• Agarwal G, Rajavel M, Gopal B, et al. Structure-based phylogeny as a diagnostic for functional characterization of proteins with a cupin fold. PLoS ONE. 2009;4(5):e5736. https://doi.org/10.1371/journal.pone.0005736.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alvarez ME, Pennell RI, Meijer P-J, et al. Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity. Cell. 1998;92(6):773–84. https://doi.org/10.1016/S0092-8674(00)81405-1.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Apse MP, Blumwald E. Na+ transport in plants. FEBS Lett. 2007;581(12):2247–54. https://doi.org/10.1016/j.febslet.2007.04.014.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Apse MP, Aharon GS, Snedden WA, et al. Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science. 1999;285(5431):1256–8. https://doi.org/10.1126/science.285.5431.1256.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aranda-Sicilia MN, Cagnac O, Chanroj S, et al. Arabidopsis KEA2, a homolog of bacterial KefC, encodes a K+/H+ antiporter with a chloroplast transit peptide. Biochim Biophys Acta (BBA) Biomembr. 2012;1818(9):2362–71. https://doi.org/10.1016/j.bbamem.2012.04.011.

    CAS 
    Article 

    Google Scholar
     

  • Assaha DV, Ueda A, Saneoka H, et al. The role of Na+ and K+ transporters in salt stress adaptation in glycophytes. Front Physiol. 2017;8:509. https://doi.org/10.3389/fphys.2017.00509.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bao AK, Du BQ, Touil L, et al. Co-expression of tonoplast Cation/H+ antiporter and H+-pyrophosphatase from xerophyte Zygophyllum xanthoxylum improves alfalfa plant growth under salinity, drought and field conditions. Plant Biotechnol J. 2016;14(3):964–75. https://doi.org/10.1111/pbi.12451.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Bernstein L, Hayward H. Physiology of salt tolerance. Annu Rev Plant Physiol. 1958;9(1):25–46. https://doi.org/10.1146/annurev.pp.09.060158.000325.

    CAS 
    Article 

    Google Scholar
     

  • Blumwald E. Sodium transport and salt tolerance in plants. Curr Opin Cell Biol. 2000;12(4):431–4. https://doi.org/10.1016/S0955-0674(00)00112-5.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Cheng C, Zhang Y, Chen X, et al. Co-expression of AtNHX1 and TsVP improves the salt tolerance of transgenic cotton and increases seed cotton yield in a saline field. Mol Breed. 2018;38(2):19. https://doi.org/10.1007/s11032-018-0774-5.

    CAS 
    Article 

    Google Scholar
     

  • Choudhury FK, Rivero RM, Blumwald E, et al. Reactive oxygen species, abiotic stress and stress combination. Plant J. 2017;90(5):856–67. https://doi.org/10.1111/tpj.13299.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Cui J, Hua Y, Zhou T, et al. Global landscapes of the Na+/H+ antiporter (NHX) family members uncover their potential roles in regulating the rapeseed resistance to salt stress. Int J Mol Sci. 2020;21(10):3429. https://doi.org/10.3390/ijms21103429.

    CAS 
    Article 
    PubMed Central 

    Google Scholar
     

  • Darko E, Khalil R, Dobi Z, et al. Addition of Aegilops biuncialis chromosomes 2M or 3M improves the salt tolerance of wheat in different way. Sci Rep. 2020;10(1):1–13. https://doi.org/10.1038/s41598-020-79372-1.

    CAS 
    Article 

    Google Scholar
     

  • Dong H. Combating salinity stress effects on cotton with agronomic practices. Afr J Agric Res. 2012;7(34):4708–15. https://doi.org/10.5897/AJAR12.501.

    Article 

    Google Scholar
     

  • Du J, Huang YP, Xi J, et al. Functional gene-mining for salt-tolerance genes with the power of Arabidopsis. Plant J. 2008;56(4):653–64. https://doi.org/10.1111/j.1365-313X.2008.03602.x.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Flowers TJ, Colmer TD. Salinity tolerance in halophytes. New Phytol. 2008;179(4):945–63. https://doi.org/10.1111/j.1469-8137.2008.02531.x.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Guo Q, Tian XX, Mao PC, Meng L. Overexpression of Iris lactea tonoplast Na+/H+ antiporter gene IlNHX confers improved salt tolerance in tobacco. Biol Plant. 2020;64:50–7. https://doi.org/10.32615/bp.2019.126.

    CAS 
    Article 

    Google Scholar
     

  • Hoagland DR, Arnon DI. The water-culture method for growing plants without soil. Circular. California Agricultural Experiment Station, 2nd ed. 1950. p. 347. https://www.cabdirect.org/cabdirect/abstract/19500302257.

  • Hu Y, Xue YQ, Liu JS, et al. Hybrid lethality caused by two complementary dominant genes in cabbage (Brassica oleracea L.). Mol Breed. 2016;36(6):1–10. https://doi.org/10.1007/s11032-016-0498-3.

    CAS 
    Article 

    Google Scholar
     

  • Khorsandi F, Anagholi A. Reproductive compensation of cotton after salt stress relief at different growth stages. J Agron Crop Sci. 2009;195(4):278–83. https://doi.org/10.1111/j.1439-037X.2009.00370.x.

    Article 

    Google Scholar
     

  • Li XB, Cai L, Cheng NH, et al. Molecular characterization of the cotton GhTUB1 gene that is preferentially expressed in fiber. Plant Physiol. 2002;130(2):666–74. https://doi.org/10.1104/pp.005538.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin IS, Wu YS, Chen CT, et al. AtRBOH I confers submergence tolerance and is involved in auxin-mediated signaling pathways under hypoxic stress. Plant Growth Regul. 2017;83(2):277–85. https://doi.org/10.1007/s10725-017-0292-1.

    CAS 
    Article 

    Google Scholar
     

  • Lin YJ, Yu XZ, Li YH, et al. Inhibition of the mitochondrial respiratory components (Complex I and Complex III) as stimuli to induce oxidative damage in Oryza sativa L. under thiocyanate exposure. Chemosphere. 2020;243:125472. https://doi.org/10.1016/j.chemosphere.2019.125472.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Longenecker D. The influence of high sodium in soils upon fruiting and shedding, boll characteristics, fiber properties, and yields of two cotton species. Soil Sci. 1974;118(6):387–96.

    CAS 
    Article 

    Google Scholar
     

  • Luo X, Dai Y, Zheng C, et al. The ABI4-RbohD/VTC2 regulatory module promotes reactive oxygen species (ROS) accumulation to decrease seed germination under salinity stress. New Phytol. 2021;229(2):950–62. https://doi.org/10.1111/nph.16921.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Lv S, Zhang K, Gao Q, et al. Overexpression of an H+-PPase gene from Thellungiella halophila in cotton enhances salt tolerance and improves growth and photosynthetic performance. Plant Cell Physiol. 2008;49(8):1150–64. https://doi.org/10.1093/pcp/pcn090.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Ma X, Dong H, Li W. Genetic improvement of cotton tolerance to salinity stress. Afr J Agric Res. 2011;6(33):6797–803.


    Google Scholar
     

  • Ma W, Ren Z, Zhou Y, et al. Genome-wide identification of the Gossypium hirsutum NHX genes reveals that the endosomal-type GhNHX4A is critical for the salt tolerance of cotton. Int J Mol Sci. 2020;21(20):7712. https://doi.org/10.3390/ijms21207712.

    CAS 
    Article 
    PubMed Central 

    Google Scholar
     

  • Martinez G, Abdelraheem A, Darapuneni M, et al. Evaluation of a multi-parent advanced generation inter-cross (MAGIC) introgressed line population for Verticillium wilt resistance in Upland cotton. Euphytica. 2018;214(10):197. https://doi.org/10.1007/s10681-018-2278-0.

    CAS 
    Article 

    Google Scholar
     

  • Martinoia E, Maeshima M, Neuhaus HE. Vacuolar transporters and their essential role in plant metabolism. J Exp Bot. 2007;58(1):83–102. https://doi.org/10.1093/jxb/erl183.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol. 2008;59:651–81. https://doi.org/10.1146/annurev.arplant.59.032607.092911.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Pál M, Majláth I, Németh E, et al. The effects of putrescine are partly overlapping with osmotic stress processes in wheat. Plant Sci. 2018;268(3):67–76. https://doi.org/10.1016/j.plantsci.2017.12.011.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Parida AK, Das A, Mittra B. Effects of salt on growth, ion accumulation, photosynthesis and leaf anatomy of the mangrove, Bruguiera parviflora. Trees. 2004;18(2):167–74. https://doi.org/10.1007/s00468-003-0293-8.

    CAS 
    Article 

    Google Scholar
     

  • Pasapula V, Shen G, Kuppu S, et al. Expression of an Arabidopsis vacuolar H+-pyrophosphatase gene (AVP1) in cotton improves drought- and salt tolerance and increases fibre yield in the field conditions. Plant Biotechnol J. 2011;9(1):88–99. https://doi.org/10.1111/j.1467-7652.2010.00535.x.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Peng J, Liu J, Zhang L, et al. Effects of soil salinity on sucrose metabolism in cotton leaves. PLoS ONE. 2016;11(5):e0156241. https://doi.org/10.1371/journal.pone.0156241.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peng Z, He S, Gong W, et al. Integration of proteomic and transcriptomic profiles reveals multiple levels of genetic regulation of salt tolerance in cotton. BMC Plant Biol. 2018;18(1):1–19. https://doi.org/10.1186/s12870-018-1350-1.

    CAS 
    Article 

    Google Scholar
     

  • Pilot G, Gaymard F, Mouline K, et al. Regulated expression of Arabidopsis Shaker K+ channel genes involved in K+ uptake and distribution in the plant. Plant Mol Biol. 2003;51(5):773–87. https://doi.org/10.1023/A:1022597102282.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Sattar S, Hussnain T, Javaid A. Effect of NaCl salinity on cotton (Gossypium arboreum L.) grown on MS medium and in hydroponic cultures. J Anim Plant Sci. 2010;20:87–9.


    Google Scholar
     

  • Stephan AB, Kunz HH, Yang E, et al. Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters. Proc Natl Acad Sci. 2016;113(35):E5242–9. https://doi.org/10.1073/pnas.1519555113.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tester M, Davenport R. Na+ tolerance and Na+ transport in higher plants. Ann Bot. 2003;91(5):503–27. https://doi.org/10.1093/aob/mcg058.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tian Q, Shen L, Luan J, et al. Rice Shaker potassium channel OsAKT2 positively regulates salt tolerance and grain yield by mediating K+ redistribution. Plant Cell Environ. 2021;44:2951–65. https://doi.org/10.1111/pce.14101.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Wang W, Vinocur B, Altman A. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta. 2003;218(1):1–14. https://doi.org/10.1007/s00425-003-1105-5.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Yamaguchi T, Fukada-Tanaka S, Inagaki Y, et al. Genes encoding the vacuolar Na+/H+ exchanger and flower coloration. Plant Cell Physiol. 2001;42(5):451–61. https://doi.org/10.1093/pcp/pce080.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Yarra R, Kirti P. Expressing class I wheat NHX (TaNHX2) gene in eggplant (Solanum melongena L.) improves plant performance under saline condition. Funct Integr Genomics. 2019;19(4):541–54. https://doi.org/10.1007/s10142-019-00656-5.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Zhang F, Zhu G, Du L, et al. Genetic regulation of salt stress tolerance revealed by RNA-Seq in cotton diploid wild species, Gossypium davidsonii. Sci Rep. 2016a;6(1):1–15. https://doi.org/10.1038/srep20582.

    CAS 
    Article 

    Google Scholar
     

  • Zhang K, Song J, Chen X, et al. Expression of the Thellungiella halophila vacuolar H+-pyrophosphatase gene (TsVP) in cotton improves salinity tolerance and increases seed cotton yield in a saline field. Euphytica. 2016b;211(2):231–44. https://doi.org/10.1007/s10681-016-1733-z.

    CAS 
    Article 

    Google Scholar
     

  • Zhang X, Yao Y, Li X, et al. Transcriptomic analysis identifies novel genes and pathways for salt stress responses in Suaeda salsa leaves. Sci Rep. 2020;10(1):1–12.

    Article 

    Google Scholar
     

  • Zhu JK. Salt and drought stress signal transduction in plants. Annu Rev Plant Biol. 2002;53(1):247–73. https://doi.org/10.1146/annurev.arplant.53.091401.143329.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)