• Bangs NL, Gulick SP, Shipley TH (2006) Seamount subduction erosion in the Nankai Trough and its potential impact on the seismogenic zone. Geology 34:701–704. https://doi.org/10.1130/G22451.1

    Article 

    Google Scholar
     

  • Barker DH, Henrys S, Caratori Tontini F, Barnes PM, Bassett D, Todd E, Wallace L (2018) Geophysical constraints on the relationship between seamount subduction, slow slip, and tremor at the north Hikurangi subduction zone. New Zealand. Geophys Res Lett 45(23):12804–12813. https://doi.org/10.1029/2018GL080259

    Article 

    Google Scholar
     

  • Barker DH, Sutherland R, Henrys S, Bannister S (2009) Geometry of the Hikurangi subduction thrust and upper plate, North Island, New Zealand. Geochem Geophys Geosyst 10(2):Q02007. https://doi.org/10.1029/2008GC002153

    Article 

    Google Scholar
     

  • Barnes PM, Lamarche G, Bialas J, Henrys S, Pecher I, Netzeband GL, Greinert J, Mountjoy J, Pedley K, Crutchley G (2010) Tectonic and geological framework for gas hydrates and cold seeps on the Hikurangi subduction margin, New Zealand. Mar Geol 272:26–48. https://doi.org/10.1016/j.margeo.2009.03.012

    Article 

    Google Scholar
     

  • Bell R, Sutherland R, Barker DHN, Henrys S, Bannister S, Wallace L, Beavan J (2010) Seismic reflection character of the Hikurangi subduction interface, New Zealand, in the region of repeated Gisborne slow slip events. Geophys J Int 180:34–48. https://doi.org/10.1111/j.1365-246X.2009.04401.x

    Article 

    Google Scholar
     

  • Carson B, Screaton EJ (1998) Fluid flow in accretionary prisms: evidence for focused, time-variable discharge. Rev Geophys 36:329–351. https://doi.org/10.1029/97RG03633

    Article 

    Google Scholar
     

  • Christoffersen J, Mehrabadi MM, Nemat-Nasser S (1981) A micromechanical description of granular material behavior. J Appl Mech 48:339–344. https://doi.org/10.1115/1.3157619

    Article 

    Google Scholar
     

  • Cloos M (1992) Thrust-type subduction-zone earthquakes and seamount asperities: a physical model for seismic rupture. Geology 20:601–604. https://doi.org/10.1130/0091-7613(1992)020%3c0601:TTSZEA%3e2.3.CO;2

    Article 

    Google Scholar
     

  • Cundall PA, Strack OD (1979) A discrete numerical model for granular assemblies. Géotechnique 29:47–65. https://doi.org/10.1680/geot.1979.29.1.47

    Article 

    Google Scholar
     

  • Davis D, Suppe J, Dahlen FA (1983) Mechanics of fold-and-thrust belts and accretionary wedges. J Geophys Res Solid Earth 88(B2):1153–1172

    Article 

    Google Scholar
     

  • Dominguez S, Malavieille J, Lallemand SE (2000) Deformation of accretionary wedges in response to seamount subduction: insights from sandbox experiments. Tectonics 19:182–196. https://doi.org/10.1029/1999TC900055

    Article 

    Google Scholar
     

  • Ellis S, Fagereng Å, Barker D, Henrys S, Saffer D, Wallace L, Williams C, Harris R (2015) Fluid budgets along the northern Hikurangi subduction margin, New Zealand: the effect of a subducting seamount on fluid pressure. Geophys J Int 202(1):277–297. https://doi.org/10.1093/gji/ggv127

    Article 

    Google Scholar
     

  • Gase AC, Van Avendonk HJA, Bangs NL, Bassett D, Henrys SA, Barker DH, Kodaira S, Jacobs K, Luckie T, Okaya D, Fujie G, Yamamoto Y, Arnulf A, Arai R (2021) Crustal structure of the northern Hikurangi margin, New Zealand: variable accretion and overthrusting plate strength influenced by rough subduction. J Geophys Res Solid Earth 126(5):e2020JB021176. https://doi.org/10.1029/2020JB021176

    Article 

    Google Scholar
     

  • Ikari MJ, Niemeijer AR, Spiers CJ, Kopf AJ, Saffer DM (2013) Experimental evidence linking slip instability with seafloor lithology and topography at the Costa Rica convergent margin. Geology 41:891–894. https://doi.org/10.1130/G33956.1

    Article 

    Google Scholar
     

  • Itasca Consulting Group Inc (2014) PFC2D (particle flow code in 2 dimensions): version 5.0. ICG, Itasca Consulting Group Inc., Minneapolis


    Google Scholar
     

  • Kobayashi K, Nakanishi M, Tamaki K, Ogawa Y (1998) Outer slope faulting associated with the western Kuril and Japan trenches. Geophys J Int 134:356–372. https://doi.org/10.1046/j.1365-246x.1998.00569.x

    Article 

    Google Scholar
     

  • Lallemand S, Culotta R, Von Huene R (1989) Subduction of the Daiichi Kashima seamount in the Japan trench. Tectonophysics 160(1–4):231–247. https://doi.org/10.1016/0040-1951(89)90393-4

    Article 

    Google Scholar
     

  • Mascle A, Moore JC et al (1988) Proc. ODP, Init. Repts., 110: College Station, TX (Ocean Drilling Program). https://doi.org/10.2973/odp.proc.ir.110.1988

  • Masson DG (1991) Fault patterns at outer trench walls. Mar Geophys Res 13:209–225. https://doi.org/10.1007/BF00369150

    Article 

    Google Scholar
     

  • Miyakawa A, Yamada Y, Matsuoka T (2010) Effect of increased shear stress along a plate boundary fault on the formation of an out-of-sequence thrust and a break in surface slope within an accretionary wedge, based on numerical simulations. Tectonophysics 484:127–138. https://doi.org/10.1016/j.tecto.2009.08.037

    Article 

    Google Scholar
     

  • Miyakawa A, Kinoshita M, Hamada Y, Otsubo M (2019) Thermal maturity structures in an accretionary wedge by a numerical simulation. Prog Earth Planet Sci 6:8. https://doi.org/10.1186/s40645-018-0252-z

    Article 

    Google Scholar
     

  • Moore GF, Park J-O, Bangs NL, Gulick SP, Tobin HJ, Nakamura Y, Sato S, Tsuji T, Yoro T, Tanaka H, Uraki S, Kido Y, Sanada Y, Kuramoto S, Taira A (2009) Structural and seismic stratigraphic framework of the NanTroSEIZE Stage 1 transect. Proceedings Integrated Ocean Drilling Program 314/315/316. https://doi.org/10.2204/iodp.proc.314315316.102.2009

  • Moore JC (1989) Tectonics and hydrogeology of accretionary prisms: role of the décollement zone. J Struct Geol 11:95–106. https://doi.org/10.1016/0191-8141(89)90037-0

    Article 

    Google Scholar
     

  • Morgan JK (2015) Effects of cohesion on the structural and mechanical evolution of fold and thrust belts and contractional wedges: discrete element simulations. J Geophys Res Solid Earth 120(5):3870–3896. https://doi.org/10.1002/2014JB011455

    Article 

    Google Scholar
     

  • Morgan JK, Bangs NL (2017) Recognizing seamount-forearc collisions at accretionary margins: insights from discrete numerical simulations. Geology 45:635–638. https://doi.org/10.1130/G38923.1

    Article 

    Google Scholar
     

  • Nakano M, Hori T, Araki E, Kodaira S, Ide S (2018) Shallow very-low-frequency earthquakes accompany slow slip events in the Nankai subduction zone. Nat Commun 9:984. https://doi.org/10.1038/s41467-018-03431-5

    Article 

    Google Scholar
     

  • Neuzil CE (1995) Abnormal pressures as hydrodynamic phenomena. Am J Sci 295:742–786. https://doi.org/10.2475/ajs.295.6.742

    Article 

    Google Scholar
     

  • Noda A, Koge H, Yamada Y, Miyakawa A, Ashi J (2020) Subduction of trench-fill sediments beneath an accretionary wedge: insights from sandbox analogue experiments. Geosphere 16:953–968. https://doi.org/10.1130/GES02212.1

    Article 

    Google Scholar
     

  • Omlin S, Räss L, Podladchikov YY (2018) Simulation of three-dimensional viscoelastic deformation coupled to porous fluid flow. Tectonophysics 746:695–701

    Article 

    Google Scholar
     

  • Park J-O, Fujie G, Wijerathne L, Hori T, Kodaira S, Fukao Y, Moore G, Bangs N, Kuramoto S, Taira A (2010) A low-velocity zone with weak reflectivity along the Nankai subduction zone. Geology 38(3):283–286. https://doi.org/10.1130/G30205.1

    Article 

    Google Scholar
     

  • Park J-O, Moore GF, Tsuru T, Kodaira S, Kaneda Y (2003) A subducted oceanic ridge influencing the Nankai megathrust earthquake rupture. Earth Planet Sci Lett 217:77–84. https://doi.org/10.1016/S0012-821X(03)00553-3

    Article 

    Google Scholar
     

  • Park J-O, Tsuru T, Kaneda Y, Kono Y, Kodaira S, Takahashi N, Kinoshita H (1999) A subducting seamount beneath the Nankai accretionary prism off Shikoku, southwestern Japan. Geophys Res Lett 26(7):931–934. https://doi.org/10.1029/1999GL900134

    Article 

    Google Scholar
     

  • Pedley KL, Barnes PM, Pettinga JR, Lewis KB (2010) Seafloor structural geomorphic evolution of the accretionary frontal wedge in response to seamount subduction, Poverty Indentation, New Zealand. Mar Geol 270(1–4):119–138. https://doi.org/10.1016/j.margeo.2009.11.006

    Article 

    Google Scholar
     

  • Ranero CR, von Huene R (2000) Subduction erosion along the Middle America convergent margin. Nature 404:748–752. https://doi.org/10.1038/35008046

    Article 

    Google Scholar
     

  • Ruh JB, Sallarès V, Ranero CR, Gerya T (2016) Crustal deformation dynamics and stress evolution during seamount subduction: high-resolution 3-D numerical modeling. J Geophys Res Solid Earth 121:6880–6902. https://doi.org/10.1002/2016JB013250

    Article 

    Google Scholar
     

  • Saffer DM, Bekins BA (2002) Hydrologic controls on the morphology and mechanics of accretionary wedges. Geology 30:271–274. https://doi.org/10.1130/0091-7613(2002)030%3c0271:HCOTMA%3e2.0.CO;2

    Article 

    Google Scholar
     

  • Saffer DM, Tobin HJ (2011) Hydrogeology and mechanics of subduction zone forearcs: fluid flow and pore pressure. Annu Rev Earth Planet Sci 39:157–186. https://doi.org/10.1146/annurev-earth-040610-133408

    Article 

    Google Scholar
     

  • Saffer DM, Wallace LM (2015) The frictional, hydrologic, metamorphic and thermal habitat of shallow slow earthquakes. Nat Geosci 8:594–600. https://doi.org/10.1038/ngeo2490

    Article 

    Google Scholar
     

  • Seno T, Stein S, Gripp AE (1993) A model for the motion of the Philippine Sea plate consistent with NUVEL-1 and geological data. J Geophys Res Solid Earth 98:17941–17948. https://doi.org/10.1029/93JB00782

    Article 

    Google Scholar
     

  • Shiraishi K, Moore GF, Yamada Y, Kinoshita M, Sanada Y, Kimura G (2019) Seismogenic zone structures revealed by improved 3-D seismic images in the Nankai trough off Kumano. Geochem Geophys Geosyst 20:2252–2271. https://doi.org/10.1029/2018GC008173

    Article 

    Google Scholar
     

  • Shiraishi K, Yamada Y, Nakano M, Kinoshita M, Kimura G (2020) Three-dimensional topographic relief of the oceanic crust may control the occurrence of shallow very-low-frequency earthquakes in the Nankai Trough off Kumano. Earth Planets Space 72:72. https://doi.org/10.1186/s40623-020-01204-3

    Article 

    Google Scholar
     

  • Singh SC, Hananto N, Mukti M, Robinson DP, Das S, Chauhan A, Carton H, Gratacos B, Midnet S, Djajadihardja Y, Harjono H (2011) Aseismic zone and earthquake segmentation associated with a deep subducted seamount in Sumatra. Nat Geosci 4(5):308–311. https://doi.org/10.1038/ngeo1119

    Article 

    Google Scholar
     

  • Sun T, Saffer D, Ellis S (2020) Mechanical and hydrological effects of seamount subduction on megathrust stress and slip. Nat Geosci 13:249–255. https://doi.org/10.1038/s41561-020-0542-0

    Article 

    Google Scholar
     

  • Taira A, Hill I, Firth JV et al (1991) Proc. ODP, Init. Repts., 131: College Station, TX (Ocean Drilling Program). https://doi.org/10.2973/odp.proc.ir.131.1991

  • Tsuji T, Kodaira S, Ashi J, Park J-O (2013) Widely distributed thrust and strike-slip faults within subducting oceanic crust in the Nankai Trough off the Kii Peninsula, Japan. Tectonophysics 600:52–62. https://doi.org/10.1016/j.tecto.2013.03.014

    Article 

    Google Scholar
     

  • Tsuji T, Kamei R, Pratt RG (2014) Pore pressure distribution of a mega-splay fault system in the Nankai Trough subduction zone: insight into up-dip extent of the seismogenic zone. Earth Planet Sci Lett 396:165–178. https://doi.org/10.1016/j.epsl.2014.04.011

    Article 

    Google Scholar
     

  • Tsuru T, Park J-O, Takahashi N, Kodaira S, Kido Y, Kaneda Y, Kono Y (2000) Tectonic features of the Japan Trench convergent margin off Sanriku, northeastern Japan, revealed by multichannel seismic reflection data. J Geophys Res Solid Earth 105(B7):16403–16413. https://doi.org/10.1029/2000JB900132

    Article 

    Google Scholar
     

  • von Huene R, Ranero CR, Weinrebe W, Hinz K (2000) Quaternary convergent margin tectonics of Costa Rica, segmentation of the Cocos Plate, and Central American volcanism. Tectonics 19:314–334. https://doi.org/10.1029/1999TC001143

    Article 

    Google Scholar
     

  • von Huene R, Ranero CR (2003) Subduction erosion and basal friction along the sediment starved convergent margin off Antofagasta Chile. J Geophys Res 108:2079. https://doi.org/10.1029/2001JB001569

    Article 

    Google Scholar
     

  • Wang C, Ding W, Schellart WP, Li J, Dong C, Fang Y, Hao T, Tong Z (2021) Effects of multi-seamount subduction on accretionary wedge deformation: insights from analogue modelling. J Geodyn 145:101842. https://doi.org/10.1016/j.jog.2021.101842

    Article 

    Google Scholar
     

  • Wang K, Bilek SL (2014) Invited review paper: fault creep caused by subduction of rough seafloor relief. Tectonophysics 610:1–24. https://doi.org/10.1016/j.tecto.2013.11.024

    Article 

    Google Scholar
     

  • Wessel P, Sandwell DT, Kim SS (2010) The global seamount census. Oceanography 23(1):24–33. https://doi.org/10.5670/oceanog.2010.60

    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.springeropen.com/)