• 1.

    Ananthakrishnan AN. Epidemiology and risk factors for IBD. Nat Rev Gastroenterol Hepatol. 2015;12(4):205–17. https://doi.org/10.1038/nrgastro.2015.34.

    Article 
    PubMed 

    Google Scholar
     

  • 2.

    Guan Q. A comprehensive review and update on the pathogenesis of inflammatory bowel disease. J Immunol Res. 2019;2019:1–16. https://doi.org/10.1155/2019/7247238.

    CAS 
    Article 

    Google Scholar
     

  • 3.

    Friedrich M, Pohin M, Powrie F. Cytokine networks in the pathophysiology of inflammatory bowel disease. Immunity. 2019;50(4):992–1006. https://doi.org/10.1016/j.immuni.2019.03.017.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 4.

    Lee SH, Kwon JE, Cho ML. Immunological pathogenesis of inflammatory bowel disease. Intest Res. 2018;16(1):26–42. https://doi.org/10.5217/ir.2018.16.1.26.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 5.

    Kojima F, Kapoor M, Kawai S, Crofford LJ. New insights into eicosanoid biosynthetic pathways: implications for arthritis. Expert Rev Clin Immunol. 2006;2(2):277–91. https://doi.org/10.1586/1744666X.2.2.277.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 6.

    Kojima F, Matnani RG, Kawai S, Ushikubi F, Crofford LJ. Potential roles of microsomal prostaglandin E synthase-1 in rheumatoid arthritis. Inflamm Regen. 2011;31(2):157–66. https://doi.org/10.2492/inflammregen.31.157.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 7.

    Jakobsson PJ, Thoren S, Morgenstern R, Samuelsson B. Identification of human prostaglandin E synthase: a microsomal, glutathione-dependent, inducible enzyme, constituting a potential novel drug target. Proc Natl Acad Sci U S A. 1999;96(13):7220–5. https://doi.org/10.1073/pnas.96.13.7220.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 8.

    Murakami M, Naraba H, Tanioka T, Semmyo N, Nakatani Y, Kojima F, et al. Regulation of prostaglandin E2 biosynthesis by inducible membrane-associated prostaglandin E2 synthase that acts in concert with cyclooxygenase-2. J Biol Chem. 2000;275(42):32783–92. https://doi.org/10.1074/jbc.M003505200.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 9.

    Murakami M, Nakashima K, Kamei D, Masuda S, Ishikawa Y, Ishii T, et al. Cellular prostaglandin E2 production by membrane-bound prostaglandin E synthase-2 via both cyclooxygenases-1 and -2. J Biol Chem. 2003;278(39):37937–47. https://doi.org/10.1074/jbc.M305108200.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 10.

    Tanioka T, Nakatani Y, Semmyo N, Murakami M, Kudo I. Molecular identification of cytosolic prostaglandin E2 synthase that is functionally coupled with cyclooxygenase-1 in immediate prostaglandin E2 biosynthesis. J Biol Chem. 2000;275(42):32775–82. https://doi.org/10.1074/jbc.M003504200.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 11.

    Sharon P, Ligumsky M, Rachmilewitz D, Zor U. Role of prostaglandins in ulcerative colitis. Enhanced production during active disease and inhibition by sulfasalazine. Gastroenterology. 1978;75(4):638–40. https://doi.org/10.1016/S0016-5085(19)31672-5.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 12.

    Narumiya S, Sugimoto Y, Ushikubi F. Prostanoid receptors: structures, properties, and functions. Physiol Rev. 1999;79(4):1193–226. https://doi.org/10.1152/physrev.1999.79.4.1193.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 13.

    Kabashima K, Saji T, Murata T, Nagamachi M, Matsuoka T, Segi E, et al. The prostaglandin receptor EP4 suppresses colitis, mucosal damage and CD4 cell activation in the gut. J Clin Invest. 2002;109(7):883–93. https://doi.org/10.1172/JCI14459.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 14.

    Jiang GL, Nieves A, Im WB, Old DW, Dinh DT, Wheeler L. The prevention of colitis by E prostanoid receptor 4 agonist through enhancement of epithelium survival and regeneration. J Pharmacol Exp Ther. 2007;320(1):22–8. https://doi.org/10.1124/jpet.106.111146.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 15.

    Matsumoto Y, Nakanishi Y, Yoshioka T, Yamaga Y, Masuda T, Fukunaga Y, et al. Epithelial EP4 plays an essential role in maintaining homeostasis in colon. Sci Rep. 2019;9(1):15244. https://doi.org/10.1038/s41598-019-51639-2.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Vong L, Ferraz JG, Panaccione R, Beck PL, Wallace JL. A pro-resolution mediator, prostaglandin D(2), is specifically up-regulated in individuals in long-term remission from ulcerative colitis. Proc Natl Acad Sci U S A. 2010;107(26):12023–7. https://doi.org/10.1073/pnas.1004982107.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 17.

    Korelitz BI. Role of nonsteroidal anti-inflammatory drugs in exacerbation of inflammatory bowel disease. J Clin Gastroenterol. 2016;50(2):97–8. https://doi.org/10.1097/MCG.0000000000000444.

    Article 
    PubMed 

    Google Scholar
     

  • 18.

    Engblom D, Saha S, Engstrom L, Westman M, Audoly LP, Jakobsson PJ, et al. Microsomal prostaglandin E synthase-1 is the central switch during immune-induced pyresis. Nat Neurosci. 2003;6(11):1137–8. https://doi.org/10.1038/nn1137.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 19.

    Saha S, Engstrom L, Mackerlova L, Jakobsson PJ, Blomqvist A. Impaired febrile responses to immune challenge in mice deficient in microsomal prostaglandin E synthase-1. Am J Physiol Regul Integr Comp Physiol. 2005;288(5):R1100–7. https://doi.org/10.1152/ajpregu.00872.2004.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 20.

    Inada M, Matsumoto C, Uematsu S, Akira S, Miyaura C. Membrane-bound prostaglandin E synthase-1-mediated prostaglandin E2 production by osteoblast plays a critical role in lipopolysaccharide-induced bone loss associated with inflammation. J Immunol. 2006;177(3):1879–85. https://doi.org/10.4049/jimmunol.177.3.1879.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 21.

    Trebino CE, Stock JL, Gibbons CP, Naiman BM, Wachtmann TS, Umland JP, et al. Impaired inflammatory and pain responses in mice lacking an inducible prostaglandin E synthase. Proc Natl Acad Sci U S A. 2003;100(15):9044–9. https://doi.org/10.1073/pnas.1332766100.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 22.

    Uematsu S, Matsumoto M, Takeda K, Akira S. Lipopolysaccharide-dependent prostaglandin E(2) production is regulated by the glutathione-dependent prostaglandin E(2) synthase gene induced by the Toll-like receptor 4/MyD88/NF-IL6 pathway. J Immunol. 2002;168(11):5811–6. https://doi.org/10.4049/jimmunol.168.11.5811.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 23.

    Kapoor M, Kojima F, Qian M, Yang L, Crofford LJ. Shunting of prostanoid biosynthesis in microsomal prostaglandin E synthase-1 null embryo fibroblasts: regulatory effects on inducible nitric oxide synthase expression and nitrite synthesis. Faseb J. 2006;20(13):2387–9. https://doi.org/10.1096/fj.06-6366fje.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 24.

    Kapoor M, Kojima F, Qian M, Yang L, Crofford LJ. Microsomal prostaglandin E synthase-1 deficiency is associated with elevated peroxisome proliferator-activated receptor gamma: regulation by prostaglandin E2 via the phosphatidylinositol 3-kinase and Akt pathway. J Biol Chem. 2007;282(8):5356–66. https://doi.org/10.1074/jbc.M610153200.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 25.

    Kojima F, Kapoor M, Yang L, Fleishaker EL, Ward MR, Monrad SU, et al. Defective generation of a humoral immune response is associated with a reduced incidence and severity of collagen-induced arthritis in microsomal prostaglandin E synthase-1 null mice. J Immunol. 2008;180(12):8361–8. https://doi.org/10.4049/jimmunol.180.12.8361.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 26.

    Kojima F, Frolov A, Matnani R, Woodward JG, Crofford LJ. Reduced T cell-dependent humoral immune response in microsomal prostaglandin E synthase-1 null mice is mediated by nonhematopoietic cells. J Immunol. 2013;191(10):4979–88. https://doi.org/10.4049/jimmunol.1301942.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 27.

    Maseda D, Johnson EM, Nyhoff LE, Baron B, Kojima F, Wilhelm AJ, et al. mPGES1-dependent prostaglandin E2 (PGE2) controls antigen-specific Th17 and Th1 responses by regulating T autocrine and paracrine PGE2 production. J Immunol. 2018;200(2):725–36. https://doi.org/10.4049/jimmunol.1601808.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 28.

    Subbaramaiah K, Yoshimatsu K, Scherl E, Das KM, Glazier KD, Golijanin D, et al. Microsomal prostaglandin E synthase-1 is overexpressed in inflammatory bowel disease. Evidence for involvement of the transcription factor Egr-1. J Biol Chem. 2004;279(13):12647–58. https://doi.org/10.1074/jbc.M312972200.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 29.

    Chassaing B, Aitken JD, Malleshappa M, Vijay-Kumar M. Dextran sulfate sodium (DSS)-induced colitis in mice. Curr Protoc Immunol. 2014;104(1):15.25.1–15.25.14. https://doi.org/10.1002/0471142735.im1525s104.

    Article 

    Google Scholar
     

  • 30.

    Hara S, Kamei D, Sasaki Y, Tanemoto A, Nakatani Y, Murakami M. Prostaglandin E synthases: understanding their pathophysiological roles through mouse genetic models. Biochimie. 2010;92(6):651–9. https://doi.org/10.1016/j.biochi.2010.02.007.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 31.

    Montrose DC, Nakanishi M, Murphy RC, Zarini S, McAleer JP, Vella AT, et al. The role of PGE2 in intestinal inflammation and tumorigenesis. Prostaglandins Other Lipid Mediat. 2015;116-117:26–36. https://doi.org/10.1016/j.prostaglandins.2014.10.002.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 32.

    Wirtz S, Popp V, Kindermann M, Gerlach K, Weigmann B, Fichtner-Feigl S, et al. Chemically induced mouse models of acute and chronic intestinal inflammation. Nat Protoc. 2017;12(7):1295–309. https://doi.org/10.1038/nprot.2017.044.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 33.

    Hamamoto N, Maemura K, Hirata I, Murano M, Sasaki S, Katsu K. Inhibition of dextran sulphate sodium (DSS)-induced colitis in mice by intracolonically administered antibodies against adhesion molecules (endothelial leucocyte adhesion molecule-1 (ELAM-1) or intercellular adhesion molecule-1 (ICAM-1)). Clin Exp Immunol. 1999;117(3):462–8. https://doi.org/10.1046/j.1365-2249.1999.00985.x.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 34.

    Cooper HS, Murthy SN, Shah RS, Sedergran DJ. Clinicopathologic study of dextran sulfate sodium experimental murine colitis. Lab Invest. 1993;69(2):238–49.

    CAS 
    PubMed 

    Google Scholar
     

  • 35.

    Vijay-Kumar M, Sanders CJ, Taylor RT, Kumar A, Aitken JD, Sitaraman SV, et al. Deletion of TLR5 results in spontaneous colitis in mice. J Clin Invest. 2007;117(12):3909–21. https://doi.org/10.1172/JCI33084.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 36.

    Ciceri P, Zhang Y, Shaffer AF, Leahy KM, Woerner MB, Smith WG, et al. Pharmacology of celecoxib in rat brain after kainate administration. J Pharmacol Exp Ther. 2002;302(3):846–52. https://doi.org/10.1124/jpet.302.3.846.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 37.

    Weigmann B, Tubbe I, Seidel D, Nicolaev A, Becker C, Neurath MF. Isolation and subsequent analysis of murine lamina propria mononuclear cells from colonic tissue. Nat Protoc. 2007;2(10):2307–11. https://doi.org/10.1038/nprot.2007.315.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 38.

    Laky K, Kruisbeek AM. In vivo depletion of T lymphocytes. Curr Protoc Immunol. 2016;113(1). https://doi.org/10.1002/0471142735.im0401s113.

  • 39.

    Diaz-Granados N, Howe K, Lu J, McKay DM. Dextran sulfate sodium-induced colonic histopathology, but not altered epithelial ion transport, is reduced by inhibition of phosphodiesterase activity. Am J Pathol. 2000;156(6):2169–77. https://doi.org/10.1016/S0002-9440(10)65087-0.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 40.

    Turner JR. Intestinal mucosal barrier function in health and disease. Nat Rev Immunol. 2009;9(11):799–809. https://doi.org/10.1038/nri2653.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 41.

    Chan CB, Abe M, Hashimoto N, Hao C, Williams IR, Liu X, et al. Mice lacking asparaginyl endopeptidase develop disorders resembling hemophagocytic syndrome. Proc Natl Acad Sci U S A. 2009;106(2):468–73. https://doi.org/10.1073/pnas.0809824105.

    Article 
    PubMed 

    Google Scholar
     

  • 42.

    Bauer W, Rauner M, Haase M, Kujawski S, Arabanian LS, Habermann I, et al. Osteomyelosclerosis, anemia and extramedullary hematopoiesis in mice lacking the transcription factor NFATc2. Haematologica. 2011;96(11):1580–8. https://doi.org/10.3324/haematol.2011.042515.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 43.

    Spencer RP, Pearson HA. The spleen as a hematological organ. Semin Nucl Med. 1975;5(1):95–102. https://doi.org/10.1016/s0001-2998(75)80007-9.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 44.

    Kim CH. Homeostatic and pathogenic extramedullary hematopoiesis. J Blood Med. 2010;1:13–9. https://doi.org/10.2147/JBM.S7224.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 45.

    Schubert TE, Obermaier F, Ugocsai P, Mannel DN, Echtenacher B, Hofstadter F, et al. Murine models of anaemia of inflammation: extramedullary haematopoiesis represents a species specific difference to human anaemia of inflammation that can be eliminated by splenectomy. Int J Immunopathol Pharmacol. 2008;21(3):577–84. https://doi.org/10.1177/039463200802100310.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 46.

    Ajuebor MN, Singh A, Wallace JL. Cyclooxygenase-2-derived prostaglandin D(2) is an early anti-inflammatory signal in experimental colitis. Am J Physiol Gastrointest Liver Physiol. 2000;279(1):G238–44. https://doi.org/10.1152/ajpgi.2000.279.1.G238.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 47.

    Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature. 2006;441(7090):235–8. https://doi.org/10.1038/nature04753.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 48.

    Chung Y, Chang SH, Martinez GJ, Yang XO, Nurieva R, Kang HS, et al. Critical regulation of early Th17 cell differentiation by interleukin-1 signaling. Immunity. 2009;30(4):576–87. https://doi.org/10.1016/j.immuni.2009.02.007.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 49.

    Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B. TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity. 2006;24(2):179–89. https://doi.org/10.1016/j.immuni.2006.01.001.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 50.

    Wilson NJ, Boniface K, Chan JR, McKenzie BS, Blumenschein WM, Mattson JD, et al. Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat Immunol. 2007;8(9):950–7. https://doi.org/10.1038/ni1497.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 51.

    Hsieh CS, Macatonia SE, Tripp CS, Wolf SF, O’Garra A, Murphy KM. Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science. 1993;260(5107):547–9. https://doi.org/10.1126/science.8097338.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 52.

    Morteau O, Morham SG, Sellon R, Dieleman LA, Langenbach R, Smithies O, et al. Impaired mucosal defense to acute colonic injury in mice lacking cyclooxygenase-1 or cyclooxygenase-2. J Clin Invest. 2000;105(4):469–78. https://doi.org/10.1172/JCI6899.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 53.

    Tanaka K, Suemasu S, Ishihara T, Tasaka Y, Arai Y, Mizushima T. Inhibition of both COX-1 and COX-2 and resulting decrease in the level of prostaglandins E2 is responsible for non-steroidal anti-inflammatory drug (NSAID)-dependent exacerbation of colitis. Eur J Pharmacol. 2009;603(1-3):120–32. https://doi.org/10.1016/j.ejphar.2008.11.058.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 54.

    Sann H, Erichsen J, Hessmann M, Pahl A, Hoffmeyer A. Efficacy of drugs used in the treatment of IBD and combinations thereof in acute DSS-induced colitis in mice. Life Sci. 2013;92(12):708–18. https://doi.org/10.1016/j.lfs.2013.01.028.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 55.

    Watanabe Y, Murata T, Amakawa M, Miyake Y, Handa T, Konishi K, et al. KAG-308, a newly-identified EP4-selective agonist shows efficacy for treating ulcerative colitis and can bring about lower risk of colorectal carcinogenesis by oral administration. Eur J Pharmacol. 2015;754:179–89. https://doi.org/10.1016/j.ejphar.2015.02.021.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 56.

    Trebino CE, Eskra JD, Wachtmann TS, Perez JR, Carty TJ, Audoly LP. Redirection of eicosanoid metabolism in mPGES-1-deficient macrophages. J Biol Chem. 2005; doi:M412075200 [pii];280(17):16579–85. https://doi.org/10.1074/jbc.M412075200.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 57.

    Boulet L, Ouellet M, Bateman KP, Ethier D, Percival MD, Riendeau D, et al. Deletion of microsomal prostaglandin E2 (PGE2) synthase-1 reduces inducible and basal PGE2 production and alters the gastric prostanoid profile. J Biol Chem. 2004;279(22):23229–37. https://doi.org/10.1074/jbc.M400443200 M400443200 [pii].

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 58.

    Monrad SU, Kojima F, Kapoor M, Kuan EL, Sarkar S, Randolph GJ, et al. Genetic deletion of mPGES-1 abolishes PGE2 production in murine dendritic cells and alters the cytokine profile, but does not affect maturation or migration. Prostaglandins Leukot Essent Fatty Acids. 2011;84(3-4):113–21. https://doi.org/10.1016/j.plefa.2010.10.003.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 59.

    Hokari R, Kurihara C, Nagata N, Aritake K, Okada Y, Watanabe C, et al. Increased expression of lipocalin-type-prostaglandin D synthase in ulcerative colitis and exacerbating role in murine colitis. Am J Physiol Gastrointest Liver Physiol. 2011;300(3):G401–8. https://doi.org/10.1152/ajpgi.00351.2010.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 60.

    Iwanaga K, Nakamura T, Maeda S, Aritake K, Hori M, Urade Y, et al. Mast cell-derived prostaglandin D2 inhibits colitis and colitis-associated colon cancer in mice. Cancer Res. 2014;74(11):3011–9. https://doi.org/10.1158/0008-5472.CAN-13-2792.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 61.

    Tessner TG, Cohn SM, Schloemann S, Stenson WF. Prostaglandins prevent decreased epithelial cell proliferation associated with dextran sodium sulfate injury in mice. Gastroenterology. 1998;115(4):874–82. https://doi.org/10.1016/s0016-5085(98)70259-8.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 62.

    Fukata M, Chen A, Klepper A, Krishnareddy S, Vamadevan AS, Thomas LS, et al. Cox-2 is regulated by Toll-like receptor-4 (TLR4) signaling: role in proliferation and apoptosis in the intestine. Gastroenterology. 2006;131(3):862–77. https://doi.org/10.1053/j.gastro.2006.06.017.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 63.

    Singer II, Kawka DW, Schloemann S, Tessner T, Riehl T, Stenson WF. Cyclooxygenase 2 is induced in colonic epithelial cells in inflammatory bowel disease. Gastroenterology. 1998;115(2):297–306. https://doi.org/10.1016/s0016-5085(98)70196-9.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 64.

    Ishikawa TO, Oshima M, Herschman HR. Cox-2 deletion in myeloid and endothelial cells, but not in epithelial cells, exacerbates murine colitis. Carcinogenesis. 2011;32(3):417–26. https://doi.org/10.1093/carcin/bgq268.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 65.

    Maseda D, Banerjee A, Johnson EM, Washington MK, Kim H, Lau KS, et al. mPGES-1-mediated production of PGE2 and EP4 receptor sensing regulate T cell colonic inflammation. Front Immunol. 2018;9:2954. https://doi.org/10.3389/fimmu.2018.02954.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 66.

    Nakanishi M, Perret C, Meuillet EJ, Rosenberg DW. Non-cell autonomous effects of targeting inducible PGE2 synthesis during inflammation-associated colon carcinogenesis. Carcinogenesis. 2015;36(4):478–86. https://doi.org/10.1093/carcin/bgv004.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 67.

    Egger B, Bajaj-Elliott M, MacDonald TT, Inglin R, Eysselein VE, Buchler MW. Characterisation of acute murine dextran sodium sulphate colitis: cytokine profile and dose dependency. Digestion. 2000;62(4):240–8. https://doi.org/10.1159/000007822.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 68.

    Ito R, Shin-Ya M, Kishida T, Urano A, Takada R, Sakagami J, et al. Interferon-gamma is causatively involved in experimental inflammatory bowel disease in mice. Clin Exp Immunol. 2006;146(2):330–8. https://doi.org/10.1111/j.1365-2249.2006.03214.x.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 69.

    Ito R, Kita M, Shin-Ya M, Kishida T, Urano A, Takada R, et al. Involvement of IL-17A in the pathogenesis of DSS-induced colitis in mice. Biochem Biophys Res Commun. 2008;377(1):12–6. https://doi.org/10.1016/j.bbrc.2008.09.019.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 70.

    Globig AM, Hennecke N, Martin B, Seidl M, Ruf G, Hasselblatt P, et al. Comprehensive intestinal T helper cell profiling reveals specific accumulation of IFN-gamma+IL-17+coproducing CD4+ T cells in active inflammatory bowel disease. Inflamm Bowel Dis. 2014;20(12):2321–9. https://doi.org/10.1097/MIB.0000000000000210.

    Article 
    PubMed 

    Google Scholar
     

  • 71.

    Barrie A, Khare A, Henkel M, Zhang Y, Barmada MM, Duerr R, et al. Prostaglandin E2 and IL-23 plus IL-1beta differentially regulate the Th1/Th17 immune response of human CD161(+) CD4(+) memory T cells. Clin Transl Sci. 2011;4(4):268–73. https://doi.org/10.1111/j.1752-8062.2011.00300.x.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 72.

    Yao C, Sakata D, Esaki Y, Li Y, Matsuoka T, Kuroiwa K, et al. Prostaglandin E2-EP4 signaling promotes immune inflammation through Th1 cell differentiation and Th17 cell expansion. Nat Med. 2009;15(6):633–40. https://doi.org/10.1038/nm.1968.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 73.

    Araki Y, Mukaisho K, Sugihara H, Fujiyama Y, Hattori T. Proteus mirabilis sp. intestinal microflora grow in a dextran sulfate sodium-rich environment. Int J Mol Med. 2010;25(2):203–8.

    CAS 
    PubMed 

    Google Scholar
     

  • 74.

    Bamba S, Andoh A, Ban H, Imaeda H, Aomatsu T, Kobori A, et al. The severity of dextran sodium sulfate-induced colitis can differ between dextran sodium sulfate preparations of the same molecular weight range. Dig Dis Sci. 2012;57(2):327–34. https://doi.org/10.1007/s10620-011-1881-x.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 75.

    Sun X, He S, Lv C, Sun X, Wang J, Zheng W, et al. Analysis of murine and human Treg subsets in inflammatory bowel disease. Mol Med Rep. 2017;16(3):2893–8. https://doi.org/10.3892/mmr.2017.6912.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 76.

    Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol. 1995;155:1151–64.

    CAS 
    PubMed 

    Google Scholar
     

  • 77.

    Mottet C, Uhlig HH, Powrie F. Cutting edge: cure of colitis by CD4+CD25+ regulatory T cells. J Immunol. 2003;170(8):3939–43. https://doi.org/10.4049/jimmunol.170.8.3939.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 78.

    Maul J, Loddenkemper C, Mundt P, Berg E, Giese T, Stallmach A, et al. Peripheral and intestinal regulatory CD4+ CD25(high) T cells in inflammatory bowel disease. Gastroenterology. 2005;128(7):1868–78. https://doi.org/10.1053/j.gastro.2005.03.043.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 79.

    Yu QT, Saruta M, Avanesyan A, Fleshner PR, Banham AH, Papadakis KA. Expression and functional characterization of FOXP3+ CD4+ regulatory T cells in ulcerative colitis. Inflamm Bowel Dis. 2007;13(2):191–9. https://doi.org/10.1002/ibd.20053.

    Article 
    PubMed 

    Google Scholar
     

  • 80.

    Saruta M, Yu QT, Fleshner PR, Mantel PY, Schmidt-Weber CB, Banham AH, et al. Characterization of FOXP3+CD4+ regulatory T cells in Crohn’s disease. Clin Immunol. 2007;125(3):281–90. https://doi.org/10.1016/j.clim.2007.08.003.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 81.

    Mahic M, Yaqub S, Johansson CC, Tasken K, Aandahl EM. FOXP3+CD4+CD25+ adaptive regulatory T cells express cyclooxygenase-2 and suppress effector T cells by a prostaglandin E2-dependent mechanism. J Immunol. 2006;177(1):246–54. https://doi.org/10.4049/jimmunol.177.1.246.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 82.

    Chinen T, Komai K, Muto G, Morita R, Inoue N, Yoshida H, et al. Prostaglandin E2 and SOCS1 have a role in intestinal immune tolerance. Nat Commun. 2011;2(1):190. https://doi.org/10.1038/ncomms1181.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 83.

    Axelsson LG, Landstrom E, Goldschmidt TJ, Gronberg A, Bylund-Fellenius AC. Dextran sulfate sodium (DSS) induced experimental colitis in immunodeficient mice: effects in CD4(+)-cell depleted, athymic and NK-cell depleted SCID mice. Inflamm Res. 1996;45(4):181–91. https://doi.org/10.1007/BF02285159.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 84.

    Shintani N, Nakajima T, Okamoto T, Kondo T, Nakamura N, Mayumi T. Involvement of CD4+ T cells in the development of dextran sulfate sodium-induced experimental colitis and suppressive effect of IgG on their action. Gen Pharmacol. 1998;31(3):477–81. https://doi.org/10.1016/s0306-3623(98)00004-4.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 85.

    Yamane H, Sugimoto Y, Tanaka S, Ichikawa A. Prostaglandin E(2) receptors, EP2 and EP4, differentially modulate TNF-alpha and IL-6 production induced by lipopolysaccharide in mouse peritoneal neutrophils. Biochem Biophys Res Commun. 2000;278(1):224–8. https://doi.org/10.1006/bbrc.2000.3779.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 86.

    Akaogi J, Yamada H, Kuroda Y, Nacionales DC, Reeves WH, Satoh M. Prostaglandin E2 receptors EP2 and EP4 are up-regulated in peritoneal macrophages and joints of pristane-treated mice and modulate TNF-alpha and IL-6 production. J Leukoc Biol. 2004;76(1):227–36. https://doi.org/10.1189/jlb.1203627.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)