• 1.

    Didkowska J, Wojciechowska U, Czaderny K, Olasek P, Nowotwory CA złośliwe w Polsce w 2017 roku, Cancer in Poland in 2017, Krajowy Rejestr Nowotworów, Zakład Epidemiologii i Prewencji Nowotworów, Centrum Onkologii – Instytut im. Marii Skłodowskiej-Curie, Narodowy Program Zwalczania Chorób. Warszawa: Nowotworowych, Ministerstwo Zdrowia, 2017 http://onkologia.org.pl/wp-content/uploads/Nowotwory_2017.pdf

  • 2.

    Kantor AF, Hartge P, Hoover RN, Fraumeni JF Jr. Familial and environmental interactions in bladder cancer risk. Int J Cancer. 1985;35(6):703–6. https://doi.org/10.1002/ijc.2910350602.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 3.

    Hasumi H, Yao M. Hereditary kidney cancer syndromes: Genetic disorders driven by alterations in metabolism and epigenome regulation. Cancer Sci. 2018;109(3):581–6. https://doi.org/10.1111/cas.13503.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 4.

    Chang CJ, Chen YL, Hsieh CH, Liu YJ, Yu SL, Chen JJW, et al. J HOXA5 and p53 cooperate to suppress lung cancer cell invasion and serve as good prognostic factors in non-small cell lung cancer. Cancer. 2017;8(6):1071–81. https://doi.org/10.7150/jca.17295 eCollection 2017.

    CAS 
    Article 

    Google Scholar
     

  • 5.

    Halachmi S, Madeb R, Kravtsov A, Moskovitz B, Halachmi N, Nativ O. Bladder cancer-genetic overview. Med Sci Monit. 2001;7(1):164–8.

    CAS 
    PubMed 

    Google Scholar
     

  • 6.

    Reznikoff CA, Belair CD, Yeager TR, Savelieva E, Blelloch RH, Puthenveettil JA, et al. A molecular genetic model of human bladder cancer pathogenesis. Semin Oncol. 1996;23(5):571–84.

    CAS 
    PubMed 

    Google Scholar
     

  • 7.

    Harris CC, Hollstein M. Clinical implications of the p53 tumor-suppressor gene. N Engl J Med. 1993;329(18):1318–27. https://doi.org/10.1056/NEJM199310283291807.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 8.

    Morita R, Ishikawa J, Tsutsumi M, Hikiji K, Tsukada Y, Kamidono S, et al. Allelotype of renal cell carcinoma. Cancer Res. 1991;51(3):820–3.

    CAS 
    PubMed 

    Google Scholar
     

  • 9.

    Mertens F, Johansson B, Höglund M, Mitelman F. Chromosomal imbalance maps of malignant solid tumors: a cytogenetic survey of 3185 neoplasms. Cancer Res. 1997;57(13):2765–80.

    CAS 
    PubMed 

    Google Scholar
     

  • 10.

    Andersen TI, Gaustad A, Ottestad L, Farrants GW, Nesland JM, Tveit KM, et al. Genetic alterations of the tumour suppressor gene regions 3p, 11p, 13q, 17p, and 17q in human breast carcinomas. Genes Chromosomes Cancer. 1992;4(2):113–21.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 11.

    Purdie CA, Piris J, Bird CC, Wyllie AH. 17q allele loss is associated with lymph node metastasis in locally aggressive human colorectal cancer. J Pathol. 1995;175(3):297–302. https://doi.org/10.1002/path.1711750307.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 12.

    Chisholm KM, Goff BA, Garcia R, King MC, Swisher EM. Genomic structure of chromosome 17 deletions in BRCA1-associated ovarian cancers. Cancer Genet Cytogenet. 2008;183(1):41–8. https://doi.org/10.1016/j.cancergencyto.2008.02.004.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 13.

    Steidl C, Telenius A, Shah SP, Farinha P, Barclay L, Boyle M, et al. Genome-wide copy number analysis of Hodgkin Reed-Sternberg cells identifies recurrent imbalances with correlations to treatment outcome. Blood. 2010;116(3):418–27. https://doi.org/10.1182/blood-2009-12-257345 Epub 2010 Mar 25.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 14.

    Takeuchi S, Bartram CR, Wada M, Reiter A, Hatta Y, Seriu T, et al. Allelotype analysis of childhood acute lymphoblastic leukemia. Cancer Res. 1995;55(22):5377–82.

    CAS 
    PubMed 

    Google Scholar
     

  • 15.

    Combaret V, Bréjon S, Iacono I, Schleiermacher G, Pierron G, Ribeiro A, et al. Pediatr Determination of 17q gain in patients with neuroblastoma by analysis of circulating DNA. Blood Cancer. 2011;56(5):757–61. https://doi.org/10.1002/pbc.22816 Epub 2011 Jan 11.

    Article 

    Google Scholar
     

  • 16.

    Bhatlekar S, Fields JZ, Boman BM. HOX genes and their role in the development of human cancers. J Mol Med (Berl). 2014;92(8):811–23.

    CAS 
    Article 

    Google Scholar
     

  • 17.

    Shah N, Sukumar S. The Hox genes and their roles in oncogenesis. Nat Rev Cancer. 2010;10(5):361–71. https://doi.org/10.1038/nrc2826.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 18.

    Laitinen VH, Wahlfors T, Saaristo L, Rantapero T, Pelttari LM, Kilpivaara O, et al. HOXB13 G84E mutation in Finland: population-based analysis of prostate, breast, and colorectal cancer risk. Cancer Epidemiol Biomarkers Prev. 2013;22(3):452–60. https://doi.org/10.1158/1055-9965.EPI-12-1000-T Epub 2013 Jan 4.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 19.

    Kluźniak W, Wokolorczyk D, Kashyap A, Jakubowska A, Gronwald J, Huzarski T, et al. The G84E mutation in the HOXB13 gene is associated with an increased risk of prostate cancer in Poland. Prostate. 2013;73(5):542–8. https://doi.org/10.1002/pros.22594.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 20.

    Lamm ML, Podlasek CA, Barnett DH, Lee J, Clemens JQ, Hebner CM, et al. Mesenchymal factor bone morphogenetic protein 4 restricts ductal budding and branching morphogenesis in the developing prostate. Dev Biol. 2001;232(2):301–14. https://doi.org/10.1006/dbio.2001.0187.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 21.

    Cybulski C, Wokołorczyk D, Jakubowska A, Huzarski T, Byrski T, Gronwald J, et al. Risk of breast cancer in women with a CHEK2 mutation with and without a family history of breast cancer. J Clin Oncol. 2011;29(28):3747–375. https://doi.org/10.1200/JCO.2010.34.0778.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 22.

    Beebe-Dimmer JL, Hathcock M, Yee C, Okoth LA, Ewing CM, Isaacs WB, et al. The HOXB13 G84E mutation is associated with an increased risk for prostate cancer and other malignancies. Cancer Epidemiol Biomark Prev. 2015;24(9):1366–72. https://doi.org/10.1158/1055-9965.EPI-15-0247 Epub 2015 Jun 24.

    CAS 
    Article 

    Google Scholar
     

  • 23.

    Hoffmann TJ, Sakoda LC, Shen L, Jorgenson E, Habel LA, Liu J, et al. Imputation of the rare HOXB13 G84E mutation and cancer risk in a large population-based cohort. PLoS Genet. 2015;11(1):e1004930. https://doi.org/10.1371/journal.pgen.1004930.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    Okuda H, Toyota M, Ishida W, Furihata M, Tsuchiya M, Kamada M, et al. Epigenetic inactivation of the candidate tumor suppressor gene HOXB13 in human renal cell carcinoma. Oncogene. 2006;25(12):1733–42. https://doi.org/10.1038/sj.onc.1209200.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 25.

    Marra L, Cantile M, Scognamiglio G, Perdonà S, La Mantia E, Cerrone M, et al. Deregulation of HOX B13 expression in urinary bladder cancer progression. Curr Med Chem. 2013;20(6):833–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 26.

    Zhang J, Xiao L, Qin Z, Xu A, Zhao K, Liang C, et al. Association between germline homeobox B13 (HOXB13) G84E allele and prostate cancer susceptibility: a meta-analysis and trial sequential analysis. Oncotarget. 2016;7(41):67101–10. https://doi.org/10.18632/oncotarget.11937.27.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 27.

    Nyberg T, Govindasami K, Leslie G, Dadaev T, Bancroft E, Ni Raghallaigh H, et al. Homeobox B13 G84E mutation and prostate cancer risk. Eur Urol. 2019;75(5):834–45. https://doi.org/10.1016/j.eururo.2018.11.015.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Barresi V, Ieni A, Cardia R, Licata L, Vitarelli E, Bonetti LR, et al. HOXB13 as an immunohistochemical marker of prostatic origin in metastatic tumors. APMIS. 2016;124(3):188–93.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 29.

    Botti G, Cillo C, De Cecio R, Malzone MG, Cantile M. Paralogous HOX13 Genes in Human Cancersx. Cancers (Basel). 2019;11(5):699. https://doi.org/10.3390/cancers11050699.

    CAS 
    Article 

    Google Scholar
     

  • 30.

    Ghoshal K, Motiwala T, Claus R, Yan P, Kutay H, Datta J, et al. HOXB13, a target of DNMT3B, is methylated at an upstream CpG island, and functions as a tumor suppressor in primary colorectal tumors. PLoS One. 2010;5(4):e10338. https://doi.org/10.1371/journal.pone.0010338.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 31.

    Sabatino R, Cantile M, Aquino G, Scognamiglio G, Madonna C, et al. PP076: HOX B13 and HOX C13 expression in oral squamous cell carcinoma: a tissue microarray based immunohistochemical study. Oral Oncol. 2013;49(supplement 1):S120.

    Article 

    Google Scholar
     

  • 32.

    Akbari R, Anderson LN, Buchanan DD, Clendenning M, Jenkins MA, Win AK, et al. Germline HOXB13 p.Gly84Glu mutation and risk of colorectal cancer. Cancer Epidemiol. 2013;37:424–7.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Zhang E, Han L, Yin D, He X, Hong L, Si X, et al. H3K27 acetylation activated-long non-coding RNA CCAT1 affects cell proliferation and migration by regulating SPRY4 and HOXB13 expression in esophageal squamous cell carcinoma. Nucleic Acids Res. 2017;45(6):3086–101. https://doi.org/10.1093/nar/gkw1247.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 34.

    Cazal C, Sobral AP, de Almeida FC, das Graças Silva-Valenzuela M, Durazzo MD, Nunes FD. The homeobox HOXB13 is expressed in human minor salivary gland. Oral Dis. 2006;12:424–7.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 35.

    Xiong Y, Kuang W, Lu S, Guo H, Wu M, Ye M, et al. Long noncoding RNA HOXB13-AS1 regulates HOXB13 gene methylation by interacting with EZH2 in glioma. Cancer Med. 2018;7(9):4718–28. https://doi.org/10.1002/cam4.1718.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 36.

    Cantile M, Franco R, Schiavo G, Procino A, Cindolo L, Botti G, et al. The HOX genes network in uro-genital cancers: mechanisms and potential therapeutic implications. Curr Med Chem. 2011;18(32):4872–84. https://doi.org/10.2174/092986711797535182.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 37.

    Miao J, Wang Z, Provencher H, Muir B, Dahiya S, Carney E, et al. HOXB13 promotes ovarian cancer progression. PNAS. 2007;104(43):17093–8. pmid:17942676. https://doi.org/10.1073/pnas.0707938104.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 38.

    Erevall PL, Brommesson S, Strand C, Gruvberger-Saal S, Malmstrom P, Nordenskjold B, et al. Exploring the two-gene ratio in breast cancer—independent roles for HOXB13 and IL17BR in prediction of clinical outcome. Breast Cancer Res Treat. 2008;107(2):225–34. https://doi.org/10.1007/s10549-007-9541-8.

    CAS 
    Article 

    Google Scholar
     

  • 39.

    Jerevall PL, Jansson A, Fornander T, Skoog L, Nordenskjold B, Stal O. Predictive relevance of HOXB13 protein expression for tamoxifen benefit in breast cancer. Breast Cancer Res. 2010;12(4):R53. https://doi.org/10.1186/bcr2612.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)