• Abdel Sattar AA, El-Mouhamady AA (2012) Genetic analysis and molecular markers for yield and its components traits in faba bean (Vicia Faba L.). Aus J of Basic & Applied Sci 6:458–466

    CAS 

    Google Scholar
     

  • Abedi T, Pakniyat H (2010) Antioxidant enzyme changes in response to drought stress in ten cultivars of oilseed rape (Brassica napus L.). Czech J Genet Plant Breed 46:27–34

    CAS 

    Google Scholar
     

  • Abo-Hamed SA, El-Mouhamady AA, Madkour MA (2016) Study the resistance of water shortage in wheat through root traits and half diallel analysis under normal and drought conditions. J of Enviro Sci 45:247–253


    Google Scholar
     

  • Ahmadi SAK, Ebadi A, Jahanbakhsh S, Daneshian J, Siadat SA (2015) Changes in enzymatic and nonenzymatic antioxidant defense mechanisms of canola seedlings at different drought stress and nitrogen levels. Turkish J of Agric and Fore 39:601–612

    CAS 

    Google Scholar
     

  • Al-Kordy MA, Ibrahim HM, El-Mouhamady AA, Abdel-Rahman HM (2019) Genetic stability analysis and molecular depiction in elite entries of rice (Oryza Sativa L.). Bull of the Nat Res Cen 43:1–15


    Google Scholar
     

  • Ashraf M (2009) Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotech Adva 27:84–93

    CAS 

    Google Scholar
     

  • Bozin B, Mimica-Dukic N, Samojlik I, Goran A, Igic R (2008) Phenolics as antioxidants in garlic (Allium sativum L., Alliaceae). Food Chem 111:925–929

    CAS 

    Google Scholar
     

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brown AHD (1978) Isozymes, plant population genetic structure and genetic conservation. Theo and App Gen 52:145–157

    CAS 

    Google Scholar
     

  • Childs RE, Bardsley WG (1975) Steady-state kinetics of peroxidase with 2,2′-azinodi-(3-ethyl-benzthiazoline6-sulphonic acid) as chromogen. Bioch J 145:93–103

    CAS 

    Google Scholar
     

  • El- Demardash IS, El-Mouhamady AA, Abdel- Rahman HM, Elewa TA, Aboud KA (2017) Using gamma rays for improving water deficit tolerance in rice. Cur Sci Int 6:321–327


    Google Scholar
     

  • El-Beltagi HS, Mohamed AA, Rashed MM (2010) Response of antioxidative enzymes to cadmium stress in leaves and roots of radish. Notu Scientia Biolo 2:76–82

    CAS 

    Google Scholar
     

  • Eldessouky ELS, Heiba SAA, El-Mouhamady AA, Abdel-Tawab YM (2016) DNA fingerprinting and half diallel analysis of some rice genotypes under water deficit conditions. RJPBCS 7:985–997

    CAS 

    Google Scholar
     

  • El-Keredy MS, Draz AE, Ragab AY, Abdallah AA, El-Mouhamady AA (2003a) Combining ability for some quantitative characters in rice (Oryza sativa L.) under normal and saline soil conditions. Tenth Conf Agro Octo Suez Canal Univ El-Irish Egypt 9:7–10


    Google Scholar
     

  • El-Keredy MS, Draz AE, Ragab AY, Abdallah AA, El-Mouhamady AA (2003b). Effect of different levels of salinity on some agronomic, yield and its components and grain quality characters in rice. Proc 10th -The tenth conf. of agro. Octo. Suez Canal Univ. Fac. Environ. Agric Sci El-Irish Egypt: 80–89

  • El-Keredy MS, Draz AE, Ragab AY, Abdallah AA, El-Mouhamady AA (2003c) Studies on rice 9Oryza Sativa L.) II. Genetical analysis and correlation coefficients in some chemical and grain yield and its components characters in rice under saline soil conditions. In: Proceedings of the10th the tenth conf. of agro. Octo. Suez Canal Univ. Fac. Environ. Agric Sci El-Irish Egypt: 121–132

  • El-Mouhamady (2003) Breeding studies for Salt Tolerance in rice. Ph.D Thesis Tan Uni Bra Kafr-She Fac Agric Egypt

  • El-Mouhamady (2009) Breeding for drought tolerance in rice. Ph.D Thesis Fac Agric Kafr-Shei Univ Egypt

  • El-Mouhamady AA, Abd-El-Aal SKH, Elewa TA, Aboud KA (2015) Studies on the biotic stress resistance in rice through molecular markers and six population analysis. Int JCurr Microbiol App Sci 4:831–854

    CAS 

    Google Scholar
     

  • El-Mouhamady AA, Abdel-Rahman HM, Rizkalla AA, El-Metwally MA (2019) Assessment of water stress tolerance in wheat genotypes based on half diallel analysis and DNA fingerprinting. Pak J of Biol Sci 22:103–116

    CAS 

    Google Scholar
     

  • El-Mouhamady AA, Amer KhA, Ragab AY (2012a) a) Development of salinity tolerance in some genotypes of barley using line X tester analysis and some techniques of biotechnology. J of Appl Sci Res 8:972–982

    CAS 

    Google Scholar
     

  • El-Mouhamady AA, El-Ashary ZM, Mohamed FI, Elewa TA, Aboud KA (2016) Study the effect of water stress conditions on some genotypes of bread Wheat (Triticum aestivum L.) based on morphological, physiological traits and DNA fingerprinting. RJPBCS 5:2065–2077


    Google Scholar
     

  • El-Mouhamady AA, El-Demardash IS, Aboud KA (2010) Biochemical and molecular genetic studies on rice tolerance to salinity. J of Ame Sci 6:521–535


    Google Scholar
     

  • El-Mouhamady AA, El-Ekhtyar AM, El-Demardash IS (2012b) Molecular markers linked to some traits in rice. J of Appl Sci Res 8:2689–2699

    CAS 

    Google Scholar
     

  • El-Mouhamady AA, El-Ekhtyar AM, Zayed BA (2011) Molecular genetic studies on sterility and fertility traits in rice under egyptian conditions. Faculty of Science, Zagazig University., 6Th Envir Conf 59–68

  • El-Mouhamady AA, El-Metwally MA (2020) Appreciation of genetic parameters and molecular characterization in some promising accessions of soybean (Glycine max L.). Pak J of Biol Sci 23:425–438

    CAS 

    Google Scholar
     

  • El-Mouhamady AA, El-Seidy EH, Aboud KA (2012c) Identification of a molecular markers linked to drought tolerance in some genotypes of barley. Aust J of Basic and Applied Sci 6(5):196–204

    CAS 

    Google Scholar
     

  • El-Mouhamady AA, El-Seidy EH, El-Ekhtyar AM, Elewa TA (2014a) Molecular markers and physiological traits linked to salinity tolerance in rice. Int J of Acad Res Part A 6:195–205


    Google Scholar
     

  • El-Mouhamady AA, Gad AM, Abdel Karim GSA (2020) Genetic Amelioration in lentil (Lens culinaris L.) using different doses of ethyl methane sulphonate. Bull of the Nati Res Cen 44:88–102


    Google Scholar
     

  • El-Mouhamady AA, Gad AM, Abdel Karim GSA, Abdel-samea NS, Habouh MAF (2021b) Biochemical and molecular genetic markers associated with salinity tolerance in flax (Linum usitatissimum L.). Annals of R.S.C.B 25: 4828–4844

  • El-Mouhamady AA, Gad AM, Habouh MAF (2021b) Determination of genetic parameters associated with salt stress tolerance in canola based on scot markers and protein pattern analysis. Asian J Plant Sci 20:534–554. https://doi.org/10.3923/ajps.2021.534.554

    CAS 
    Article 

    Google Scholar
     

  • El-Mouhamady AA, Habouh MAF (2019) Genetic improvement of some rice genotypes for salinity tolerance using generation mean analysis. Cu Sci Int 8:321–348


    Google Scholar
     

  • El-Mouhamady AA, Ibrahim HF (2020) Elicitation of salt stress-tolerant mutants in bread wheat (Triticum aestivum L.) by using gamma radiation. Bull of the Nat Res Cen 44:1–18


    Google Scholar
     

  • El-Mouhamady AA, Rady MR, El-Seidy EH (2014b) Assessment of genetic variability for six lines of wheat using physiological traits and molecular markers technique under normal irrigation and water stress conditions. W Appli Sci J 29:506–516


    Google Scholar
     

  • El-Sayed AA, El-Hity MA, Abdallah AA, Abd-ella HE (2018) Role of some growth characters in improving the drought tolerance in rice. J Plant Prod Mans Univ 9:757–764


    Google Scholar
     

  • ElSayed AI, El-hamahmy MAM, Rafudeen MS, Mohamed AH, Omar AA (2019) The impact of drought stress on antioxidant responses and accumulation of flavonolignans in milk thistle (Silybum marianum (L.) Gaertn). Plants 8:611–628

    CAS 
    PubMed Central 

    Google Scholar
     

  • El-Seidy EH, El-Mouhamady AA, Aboud KA (2013) Studies on the modification of gene expression which responsible for salinity tolerance in some genotypes of wheat. Int J of Acad Res Part A 5:23–32


    Google Scholar
     

  • Esmail RM, Abdel Sattar AA, Abdel-samea NS, El-Mouhamady AA, Abdelgany EM, Fathallaha FB (2016) Assessment of genetic parameters and drought tolerance indices in maize diallel crosses. Res J Pharm Biol Chem Sci 7:2409–2428


    Google Scholar
     

  • Farid MA, Abou Shousha AA, Negm MEA, Shehata SM (2016) Genetical and Molecular studies on salinity and drought tolerance in rice (Oryza Sativa L.). J Agric Res Kafr El-Sheikh Univ 42:1–23


    Google Scholar
     

  • Farshadfar E, Ghasempour H, Vaezi H (2008) Molecular aspects of drought tolerance in bread wheat (T. aestivum). Pak J Biol Sci 11:118–112

    CAS 
    PubMed 

    Google Scholar
     

  • Feki K, Tounsi S, Brini F (2017) Comparison of an antioxidant system in tolerant and susceptible wheat seedlings in response to salt stress. Span J of Agric Res 15:e0805–e0815


    Google Scholar
     

  • Foyer C, Noctor G (2003) Redox sensing and signaling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol Plant 119:355–364

    CAS 

    Google Scholar
     

  • Gunes A, Pilbeam D, Inal A, Coban S (2008) Influence of silicon on sunflower cultivars under drought stress, I: growth, antioxidant mechanisms and lipid peroxidation. Commun Soil Sci Plant Nutr 39:1885–1903

    CAS 

    Google Scholar
     

  • Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione transferases: the first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    CAS 
    PubMed 

    Google Scholar
     

  • Heiba SAA, Eldessouky SEI, El-Mouhamady AA, El-Demardash IS, Abdel-Raheem AA (2016a) Use of RAPD and ISSR assays for the detection of mutation changes in wheat (Triticumaestivium L.) DNA induced by ethyl-methane sulphonate (EMS). Int J of Chem Tech Res 9:42–49

    CAS 

    Google Scholar
     

  • Heiba SAA, El-Mouhamady AA, Eldessouky SEI, Ali HBM, Elewa TA (2016 a) Study the genetic variations related to the resistance of heavy metals toxicity in some rice genotypes using RAPD markers. Int J Curr Micro App Sci 5: 174–189 http://www.ijcmas.com

  • Hellal F, El-Sayed S, Gad AA, Abdel Karim G, Abdelly C (2020) Antitranspirants application for improving the biochemical changes of barely under water stress. I J Agric Sci 51:287–298


    Google Scholar
     

  • Herwibawa B, Haryanto TAD, Sakhidin, (2014) Peroxidase isozyme identification of some rice genotypes in M1 generation under drought stress level of-0.03 MPa. Agrivita 36:210–216


    Google Scholar
     

  • IRRI (2005) IRRISTAT for Windows. V6 Manila, Philippines. Int Rice Res Insti

  • Kar M, Mishra D (1976) Catalase, peroxidase and polyphenol oxidase during rice leaf senescene. Plant Physiol 57:315–319

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kempthorne O (1957) An introduction to genetic statistics. Wiley, New York

    MATH 

    Google Scholar
     

  • khatab IA, El-Mouhamady AA, Abdel-Rahman HM, Farid MA, El-Demardash IS, (2017) Agro-morphological and molecular characterization of sorghum (Sorghum Vulgare L.) for water stress tolerance. Int J Cur Res Biosci Plant Biol 4:37–55


    Google Scholar
     

  • Khatab IA, El-Mouhamady AA, Mariey SA, Elewa TA (2019) Assessment of water deficiency tolerance indices and their relation with ISSR markers in barley (Hordeum vulgare L.). Cu Sci Int 8:83–100


    Google Scholar
     

  • Khatab IA, El-Mouhamady AA, Mariey SA, El-Hawary MM, Habouh MAF (2021) Molecular evaluation and identification of some barley hybrids tolerant to salt stress. Pak J Biol Sci 24:997–1014. https://doi.org/10.3923/pjbs.2021.997.1014

    Article 
    PubMed 

    Google Scholar
     

  • Kim Y, Chung YS, Lee E, Tripathi P, Heo S, Kim KH (2020) Root response to drought stress in rice (Oryza Sativa L.). Int J Mol Sci 21:1–22. https://doi.org/10.3390/ijms21041513www

    Article 

    Google Scholar
     

  • Kishk AMS, Abdel-Rahman HM, El-Mouhamady AA, Aboud KA (2017) Sophisticated genetic studies on onion through using gamma rays. Res J Pharm Biol & Chem Sci 8:202–220

    CAS 

    Google Scholar
     

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mahajan S, Tuteja N (2005) Cold, salinity, and drought stresses: an overview. Arch Biochem Biophys 444:139–158

    CAS 
    PubMed 

    Google Scholar
     

  • Manchenko G (2002) Handbook of detection of enzymes on electrophoretic gels. CRC Press Boca Raton. https://doi.org/10.1201/9781420040531

    Article 

    Google Scholar
     

  • Melandri G, AbdElgawad H, Riewe D, Hageman JA, Asard H, Beemster GTS, Kadam N, Jagadish K, Altamann T, Spira CR, Bouwmeester H (2020) Biomarkers for grain yield stability in rice under drought stress. J Exp Bot 71:669–683

    CAS 
    PubMed 

    Google Scholar
     

  • Mittler R (2017) ROS are good! Trends Plant Sci 22:11–19

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moradpour K, Najaphy A, Mansoorifar S, Mostafaie A (2014) Evaluation of leaf protein pattern in wheat genotypes under drought stress. Int J Adva Biol Biomed Res 2:840–846

    CAS 

    Google Scholar
     

  • Morgan JM (1980) Osmotic adjustment in the spikelets and leaves of wheat. J Exp Bot 31:655–665


    Google Scholar
     

  • Mwando E, Han Y, Angessa TT, Zhou G, Hill CB, Zhang XG, Li C (2020) Genome-wide association study of salinity tolerance during germination in barley (Hordeum vulgare L). Front Plant Sci 11:1–15


    Google Scholar
     

  • Najaphy A, Moradpour K, Mansourifar C, Mostafaie A (2014) Terminal drought induced changes in leaf protein pattern of wheat. Int J Plant Anim Enviorn Sci 4:23–26

    CAS 

    Google Scholar
     

  • Najaphy A, Niari Khamssi N, Mostafaei MH (2010) Effect of progressive water deficit stress on proline accumulation and protein profiles of leaves in chickpea. Afr J Biot 9:7033–7036

    CAS 

    Google Scholar
     

  • Nakabayashi R, Saito K (2015) Integrated metabolomics for abiotic stress responses in plants. Cur Opin Plant Biol 24:10–16

    CAS 

    Google Scholar
     

  • Noctor G, Mhamdi A, Foyer CH (2014) The roles of reactive oxygen metabolism in drought: not so cut and dried. Plant Phys 164:1636–1648

    CAS 

    Google Scholar
     

  • Oono Y, Seki M, Satou M, Iida K, Akiyama K, Sakurai T, Fujita M, Yamaguchi-Shinozaki K, Shinozaki K (2006) Monitoring expression profiles of Arabidopsis genes during cold acclimation and deacclimation using DNA microarrays. Funct Integr Genomics 6:212–234

    CAS 
    PubMed 

    Google Scholar
     

  • Pan Y, Wu LJ, Yu ZL (2006) Effect of salt and drought stress on antioxidant enzymes activities and SOD isoenzymes of liquorice (Glycorhiza uralensis Fisch). J Plant Growth Reg 49:157–165

    CAS 

    Google Scholar
     

  • Radotic K, Ducic T, Mutavdzic, (2000) Changes in peroxidase activity and isozymes in spruce needles after exposure to different concentrations of cadmium. Environ Exp Bot 44:105–113

    CAS 
    PubMed 

    Google Scholar
     

  • Ramadan WA, Abdel-Rahman HM, El-Mouhamady AA, Habouh MAF, Aboud KA (2016) Molecular genetic studies on some barley entries for drought tolerance. Int J Pharm Tech Res 9:265–285

    CAS 

    Google Scholar
     

  • Reddy AM, Kumar SG, Jyothsnakumari G, Thimmanaik S, Sudhakar C (2005) Lead induced changes in antioxidant metabolism of horsegram (Macrotyloma uniflorum (Lam.) Verdc.) and bengalgram (Cicer arietinum L.). Chemosphere 60:97–104

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Reshma A, Raja RV, Latha P (2020) Influence of drought stress on leaf protein pattern of maize genotypes. Int J Chem Sturuct 8:245–247

    CAS 

    Google Scholar
     

  • Rodziewicz P, Chmielewska K, Sawikowska A, Marczak T, Łuczak M, Bednarek P, Mikołajczak K, Ogrodowicz P, Kuczyńska A, Krajewski P, Stobiecki M (2019) Identification of drought responsive proteins and related proteomic QTLs in barley. J Exp Bot 70:2823–2837

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roxas VP, Lodhi SA, Garrett DK, Mahan JR, Allen RD (2000) Stress tolerance in transgenic tobacco seedlings that overexpress glutathione S-transferase/glutathione peroxidase. Plant Cell Phys 41:1229–1234

    CAS 

    Google Scholar
     

  • Sadiya S (2020) Morphological analysis of drought tolerance traits in rice (Oryza Sativa L.). Acta Sci Agric 4:1–9


    Google Scholar
     

  • Shafina H, Roy P, Anandan A, Samantaray S, Pradhan SK, Singh ON (2015) Genetic diversity study of seed proteins in rice drought tolerant donar accessions. Crop Improv Div Cent Rice Res Inst 6:105–376


    Google Scholar
     

  • Sharma P, Dubey RS (2005) Drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedlings. Plant Growth Reg 46:209–221

    CAS 

    Google Scholar
     

  • Sharma R, Sahoo A, Devendran R, Jain M (2014) Over-expression of a rice tau class glutathione S-transferase gene improves tolerance to salinity and oxidative stresses in Arabidopsis. PloS ONE 9: e92900

  • Singh SP, Kumar A, Satyendra KM, Nahakpam S, Sinha S, Smirty SP, Kumar S, Singh PK (2018) Identification of drought tolerant rice (Oryza sativa L.) genotypes using drought tolerance indices under normal and water stress condition. Int J Curr Microbiol Appl Sci 7:4757–4766


    Google Scholar
     

  • Stegemann H, Afify AMR, Hussein KRF (1985) Cultivar identification of dates (Phoenix dactylifera) by protein patterns. In: Second international symposium of biochemical approaches to identification of cultivars, Braunschweing West Germany p. 44

  • Studier FW (1973) Analysis of bacteriophage T7 early RNAs and proteins on slab gels. J Mol Bio 79:237–242

    CAS 

    Google Scholar
     

  • Suzuki N, Koussevitzky S, Mittler R, Miller G (2012) ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ 35:259–270

    CAS 
    PubMed 

    Google Scholar
     

  • Tanou G, Molassiotis A, Diamontidis G (2009) Induction of reactive oxygen species and necrotic death-like destruction in strawberry leaves by salinity. Environ Exp Bot 65:270–281

    CAS 

    Google Scholar
     

  • Tawfik RS, El-Mouhamady AA (2019) Molecular genetic studies on abiotic stress resistance in sorghum entries through using half diallel analysis and inter-simple sequence repeat (ISSR) markers. Bull Nat Res Cen 43:1–17. https://doi.org/10.1186/s42269-019-0155-1

    Article 

    Google Scholar
     

  • Verslues PE, Juenger TE (2011) Drought, metabolites, and Arabidopsis natural variation: a promising combination for understanding adaptation to water-limited environments. Curr Opin Plant Bio 14:240–245

    CAS 

    Google Scholar
     

  • Virmani SS, Viraktamath BC, Cassal CL, Toledo RS, Lopez MT, Manalo JO (1997) Hybrid rice breeding manual. Int Rice Res Inst

  • Weng M, Cui L, Liu F, Zhang M, Shan L, Yang S, Deng X (2015) Effects of drought stress on antioxidant enzymes in seedlings of different wheat genotypes. Pak J Bot 47:49–56

    ADS 
    CAS 

    Google Scholar
     

  • Wyanne JC, Emery DA, Rice PW (1970) Combining ability estimates in Arachis hypogea L. II- Field Performance of F1 hybrids. Crop Sci 10

  • Yang RY, Tsou SCS, Lee TC, Chang LC, Kuo G, Lai PY (2006) Moringa, a novel plant rich in antioxidants, bioavailable iron, and nutrients. In: Ho CT (ed). Chall in Chem and Bio of Herbs 224–239

  • Yang X, Wang B, Chen L, Li P, Cao C (2019) The different influence of drought stress at the flowering stage on rice physiological traits, grain yield and quality. Sci Rep 9:3742. https://doi.org/10.1038/s41598-019-40161-0

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zian AH, El-Demardash IS, El-Mouhamady AA, El-Barougy E (2013) Studies the resistance of lupine for fusarium oxysporum F. spLupini) through molecular genetic technique. World Appl Sci J 26:1064–1069

    CAS 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.springeropen.com/)