• Adamu HM, Abayeh O, Agho M, Abdullahi A, Uba A, Dukku H, Wufem B (2005) An ethnobotanical survey of Bauchi State herbal plants and their antimicrobial activity. J Ethnopharmacol 99(1):1–4. https://doi.org/10.1016/j.jep.2004.12.025

    Article 
    PubMed 

    Google Scholar
     

  • Adebayo IA, Gagman HA, Balogun WG, Adam MAA, Abas R, Hakeem KR, Him NAIIBN, Samian MRB, Arsad H (2019) Detarium microcarpum, Guiera senegalensis, and Cassia siamea induce apoptosis and cell cycle arrest and inhibit metastasis on MCF7 breast cancer cells. Evid Based Complement Alternat Med 2019:6104574. https://doi.org/10.1155/2019/6104574

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ademola IO (2016) The potential of Nigerian bioactive plants for controlling gastrointestinal nematode infection in livestock. Anim Health Res Rev 17(2):85–91. https://doi.org/10.1017/S1466252316000049

    MathSciNet 
    Article 
    PubMed 

    Google Scholar
     

  • Akuodor GC, Essien AD, David-Oku E, Chilaka KC, Akpan JL, Ezeokpo B, Ezeonwumelu JOC (2013) Gastroprotective effect of the aqueous leaf extract of Guiera senegalensis in albino rats. Asian Pac J Trop Med 6(10):771–775. https://doi.org/10.1016/S1995-7645(13)60136-4

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Alonso-Díaz MA, Torres-Acosta JFJ, Sandoval-Castro CA, Hoste H (2011) Comparing the sensitivity of two in vitro assays to evaluate the anthelmintic activity of tropical tannin rich plant extracts against Haemonchus contortus. Vet Parasitol 181(2–4):360–364. https://doi.org/10.1016/j.vetpar.2011.03.052

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Alshafei NK, Ahmed SM, Abdelfattah N (2016) Preliminary observations on the uses of Guiera senegalensis as a traditional medicinal plants in Western Kurdofan, Sudan. Int J Appl Pure Sci Agric 2(5):42–48


    Google Scholar
     

  • Arsenopoulos KV, Fthenakis GC, Katsarou EI, Papadopoulos E (2021) Haemonchosis: a challenging parasitic infection of sheep and goats. Animals 11:363. https://doi.org/10.3390/ani11020363

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Athanasiadou S, Kyriazakis I, Jackson F, Coop RL (2000) Consequences of long-term feeding with condensed tannin on sheep parasitized with Trichostrongylus colubriformis. Int J Parasitol 30(9):1025–1033. https://doi.org/10.1016/S0020-7519(00)00083-7

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Azas N, Laurencin N, Delmas F, Di Giorgio C, Gasquet M, Laget M, Timon-David P (2002) Synergistic in vitro antimalarial activity of plant extracts used as traditional herbal remedies in Mali. Parasitol Res 88(2):165–171. https://doi.org/10.1007/s004360100454

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Badar N, Iqbal Z, Khan MN, Akhtar MS (2011) In vitro and in vivo anthelmintic activity of Acacia nilotica (L.) willd. ex delile bark and leaves. Pak Vet J 31(3):185–191


    Google Scholar
     

  • Baugh LR (2013) To grow or not to grow: nutritional control of development during Caenorhabditis elegans L1 arrest. Genetics 194(3):539–555. https://doi.org/10.1534/genetics.113.150847

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Besier RB, Kahn LP, Sargison ND, Van Wyk JA (2016) The pathophysiology, ecology, and epidemiology of Haemonchus contortus infection in small ruminants. Adv Parasitol 93:95–143. https://doi.org/10.1016/bs.apar.2016.02.022

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77(1):71–94. https://doi.org/10.1093/genetics/77.1.71

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burns AR, Luciani GM, Musso G, Bagg R, Yeo M, Zhang Y, Rajendran L, Glavin J, Hunter R, Redman E, Stasiuk S, Schertzberg M, Angus McQuibban G, Caffrey CR, Cutler SR, Tyers M, Giaever G, Nislow C, Fraser AG, MacRae CA, Gilleard J, Roy PJ (2015) Caenorhabditis elegans is a useful model for anthelmintic discovery. Nat Commun 6:7485. https://doi.org/10.1038/ncomms8485

    CAS 
    Article 
    PubMed 
    ADS 

    Google Scholar
     

  • Debiage RR, Gonçalves FMF, Pereira AR, da Silva RMG, Yoshihara E, de Mello Peixoto ECT (2016) Anthelmintic potential of Psidium guajava in sheep. Planta Med 82(S 01):S1–S381. https://doi.org/10.1055/s-0036-1596981

    Article 

    Google Scholar
     

  • Dirar AI, Devkota HP (2021) Ethnopharmacological uses, phytochemistry and pharmacological activities of Guiera senegalensis J.F. Gmel. (Combretaceae). J Ethnopharmacol 267:113433. https://doi.org/10.1016/j.jep.2020.113433

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Elandalousi RB, Akkari H, B’chir F, Gharbi M, Mhadhbi M, Awadi S, Darghouth MA (2013) Thymus capitatus from Tunisian arid zone: chemical composition and in vitro anthelmintic effects on Haemonchus contortus. Vet Parasitol 197(1–2):374–378. https://doi.org/10.1016/j.vetpar.2013.05.016

    CAS 
    Article 

    Google Scholar
     

  • Gagman HA, Irwan NA, Ahmad HB (2018) In vitro study of the anthelmintic activity of aqueous and methanol extract of Guiera senegalensis against egg hatch and larval developmental of Caenorhabditis elegans. Bayero J Pure Appl Sci 11(2):274–278. https://doi.org/10.4314/bajopas.v11i2.38

    Article 

    Google Scholar
     

  • Gagman HA, Him NAIIN, Ahmad H, Sulaiman SF, Zakaria R, Termizi FHM (2020) In vitro efficacy of aqueous and methanol extract of Cassia siamea against the motility of Caenorhabditis elegans. Trop Life Sci Res 31(3):145–159. https://doi.org/10.21315/tlsr2020.31.3.10

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hahnel SR, Roberts WM, Heisler I, Kulke D, Weeks JC (2021) Comparison of electrophysiological and motility assays to study anthelmintic effects in Caenorhabditis elegans. Int J Parasitol Drugs Drug Resist 16:174–187. https://doi.org/10.1016/j.ijpddr.2021.05.005

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hassan NMF, Zaghawa AA, Abu-Elezz NMT, Nayel MA, Salama AA (2021) Efficacy of some Egyptian native plant extracts against Haemonchus contortus in vitro and in experimentally infected sheep along with the associated haematological and biochemical alterations. Bull Natl Res Cent 45:180. https://doi.org/10.1186/s42269-021-00636-5

    Article 

    Google Scholar
     

  • Herrera-Manzanilla FA, Ojeda-Robertos NF, González-Garduño R, Cámara-Sarmiento R, Torres-Acosta JFJ (2017) Gastrointestinal nematode populations with multiple anthelmintic resistance in sheep farms from the hot humid tropics of Mexico. Vet Parasitol Reg Stud Rep 9:29–33. https://doi.org/10.1016/j.vprsr.2017.04.007

    CAS 
    Article 

    Google Scholar
     

  • Holden-Dye L, Walker RJ (2014) Anthelmintic drugs and nematocides: studies in Caenorhabditis elegans. In: The C. elegans Research Community (ed) WormBook. WormBook, Southampton. https://doi.org/10.1895/wormbook.1.143.2

  • Hoste H (2001) Adaptive physiological processes in the host during gastrointestinal parasitism. Int J Parasitol 31(3):231–244. https://doi.org/10.1016/S0020-7519(00)00167-3

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • IBM Corp. (2015) IBM SPSS statistics for Windows, Version 23.0. IBM Corp., Armonk


    Google Scholar
     

  • Iloki-Assanga SB, Lewis-Luján LM, Lara-Espinoza CL, Gil-Salido AA, Fernandez-Angulo D, Rubio-Pino JL, Haines DD (2015) Solvent effects on phytochemical constituent profiles and antioxidant activities, using four different extraction formulations for analysis of Bucida buceras L. and Phoradendron californicum. BMC Res Notes 8:396. https://doi.org/10.1186/s13104-015-1388-1

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iqbal Z, Babar W, Din Sindhu Z, Abbas RZ, Sajid MS (2012) Evaluation of anthelmintic activity of different fractions of Azadirachta indica A. Juss Seed Extract. Pak Vet J 32(4):579–583


    Google Scholar
     

  • Jackson F, Varady M, Bartley DJ (2012) Managing anthelmintic resistance in goats—can we learn lessons from sheep? Small Rumin Res 103(1):3–9. https://doi.org/10.1016/j.smallrumres.2011.10.012

    Article 

    Google Scholar
     

  • Katiki LM, Ferreira JFS, Zajac AM, Masler C, Lindsay DS, Chagas ACS, Amarante AFT (2011) Caenorhabditis elegans as a model to screen plant extracts and compounds as natural anthelmintics for veterinary use. Vet Parasitol 182(2–4):264–268. https://doi.org/10.1016/j.vetpar.2011.05.020

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Keiser J (2015) Is Caenorhabditis elegans the magic bullet for anthelminthic drug discovery? Trends Parasitol 31(10):455–456. https://doi.org/10.1016/j.pt.2015.08.004

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Kumarasingha R, Palombo EA, Bhave M, Yeo TC, Lim DSL, Tu CL, Shaw JM, Boag PR (2014) Enhancing a search for traditional medicinal plants with anthelmintic action by using wild type and stress reporter Caenorhabditis elegans strains as screening tools. Int J Parasitol 44(5):291–298. https://doi.org/10.1016/j.ijpara.2014.01.008

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Lienou LL, Telefo PB, Njimou JR, Nangue C, Bayala BR, Goka SC, Biapa P, Yemele MD, Donfack NJ, Mbemya JT, Tagne SR, Rodrigues APR (2015) Effect of the aqueous extract of Senecio biafrae (Oliv. & Hiern) J. Moore on some fertility parameters in immature female rat. J Ethnopharmacol 161:156–162. https://doi.org/10.1016/j.jep.2014.12.014

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Lone BA, Bandh SA, Chishti MZ, Bhat FA, Tak H, Nisa H (2013) The anthelmintic and antimicrobial activity of methanolic and aqueous extracts of Euphorbia helioscopia L. Trop Anim Health Prod 45(3):743–749. https://doi.org/10.1007/s11250-012-0283-1

    Article 
    PubMed 

    Google Scholar
     

  • Mazhangara IR, Sanhokwe M, Chivandi E, Mupangwa JF, Lorenzo JM, Muchenje V (2020) Plants for controlling parasites in goats. In: McGaw L, Abdalla M (eds) Ethnoveterinary medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-32270-0_5

    Chapter 

    Google Scholar
     

  • Min BR, Hart SP (2003) Tannins for suppression of internal parasites. J Anim Sci 81(14 Suppl 2):E102–E109


    Google Scholar
     

  • Mphahlele M, Tsotetsi-Khambule AM, Moerane R, Komape DM, Thekisoe OMM (2021) Anthelmintic resistance and prevalence of gastrointestinal nematodes infecting sheep in Limpopo Province, South Africa. Vet World 14(2):302–313. https://doi.org/10.14202/vetworld.2021.302-313

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ndjonka D, Abladam ED, Djafsia B, Ajonina-Ekoti I, Achukwi MD, Liebau E (2014) Anthelmintic activity of phenolic acids from the axlewood tree Anogeissus leiocarpus on the filarial nematode Onchocerca ochengi and drug-resistant strains of the free-living nematode Caenorhabditis elegans. J Helminthol 88(4):481–488. https://doi.org/10.1017/S0022149X1300045X

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Nguyen VT, Bowyer MC, Vuong QV, Altena IAV, Scarlett CJ (2015) Phytochemicals and antioxidant capacity of Xao tam phan (Paramignya trimera) root as affected by various solvents and extraction methods. Ind Crops Prod 67:192–200. https://doi.org/10.1016/j.indcrop.2015.01.051

    CAS 
    Article 

    Google Scholar
     

  • Piña-Vázquez DM, Mayoral-Peña Z, Gómez-Sánchez M, Salazar-Olivo LA, Arellano-Carbajal F (2017) Anthelmintic effect of Psidium guajava and Tagetes erecta on wild-type and levamisole-resistant Caenorhabditis elegans strains. J Ethnopharmacol 202:92–96. https://doi.org/10.1016/j.jep.2017.03.004

    Article 
    PubMed 

    Google Scholar
     

  • Ploeger HW, Everts RR (2018) Alarming levels of anthelmintic resistance against gastrointestinal nematodes in sheep in the Netherlands. Vet Parasitol 262:11–15. https://doi.org/10.1016/j.vetpar.2018.09.007

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Powers KG, Wood IB, Eckert J, Gibson T, Smith HJ (1982) World Associations of the Advancement of Veterinary Parasitology (W.A.A.V.P.) guidelines for evaluating the efficacy of anthelmintics in ruminants (bovine and ovine). Vet Parasitol 10(4):265–284. https://doi.org/10.1016/0304-4017(82)90078-4

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Radman I, Greiss S, Chin JW (2013) Efficient and rapid C. elegans transgenesis by bombardment and hygromycin B selection. PLoS ONE 8(10):e76019. https://doi.org/10.1371/journal.pone.0076019

    CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Singh R, Bal MS, Singla LD, Kaur P (2017) Detection of anthelmintic resistance in sheep and goat against fenbendazole by faecal egg count reduction test. J Parasit Dis 41:463–466. https://doi.org/10.1007/s12639-016-0828-8

    Article 
    PubMed 

    Google Scholar
     

  • Stiernagle T (2006) Maintenance of C. elegans. In: The C. elegans Research Community (ed) WormBook. WormBook, Southampton. https://doi.org/10.1895/wormbook.1.101.1

  • Taki AC, Byrne JJ, Boag PR, Jabbar A, Gasser RB (2021) Practical high-throughput method to screen compounds for anthelmintic activity against Caenorhabditis elegans. Molecules 26:4156. https://doi.org/10.3390/molecules26144156

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tariq KA, Chishti MZ, Ahmad F, Shawl AS (2009) Anthelmintic activity of extracts of Artemisia absinthium against ovine nematodes. Vet Parasitol 160(1–2):83–88. https://doi.org/10.1016/j.vetpar.2008.10.084

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Tiwari P, Kumar B, Kaur M, Kaur G, Kaur H (2011) Phytochemical screening and extraction: a review. Int Pharma Sci 1(1):98–106


    Google Scholar
     

  • Wang G-X, Han J, Zhao L-W, Jiang D-X, Liu Y-T, Liu X-L (2010) Anthelmintic activity of steroidal saponins from Paris polyphylla. Phytomedicine 17(14):1102–1105. https://doi.org/10.1016/j.phymed.2010.04.012

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Williams AR, Fryganas C, Ramsay A, Mueller-Harvey I, Thamsborg SM (2014) Direct anthelmintic effects of condensed tannins from diverse plant sources against Ascaris suum. PLoS ONE 9(5):e97053. https://doi.org/10.1371/journal.pone.0097053

    CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Yadav P, Singh R (2011) A review of anthelmintic drugs and their future scope. Int J Pharm Pharm Sci 3(3):17–21


    Google Scholar
     

  • Zajac AM, Garza J (2020) Biology, epidemiology, and control of gastrointestinal nematodes of small ruminants. Vet Clin Food Anim 36(1):73–87. https://doi.org/10.1016/j.cvfa.2019.12.005

    Article 

    Google Scholar
     

  • Zhang S, Bi H-M, Liu C-J (2007) Extraction of bio-active components from Rhodiola sachalinensis under ultrahigh hydrostatic pressure. Sep Purif Technol 57(2):277–282. https://doi.org/10.1016/j.seppur.2007.04.022

    CAS 
    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.springeropen.com/)