• 1.

    Lindland KM, Gjerstad B, Krøvel AV, Ravagnan E. Governing for sustainability in the Norwegian aquaculture industry. Ocean Coast Manag. 2019;179(January):104827.


    Google Scholar
     

  • 2.

    FAO. The state of world fisheries and aquaculture 2018 – meeting the sustainable development goals. Rome: Food and Agriculture Organization of the United Nations; 2018.

  • 3.

    Martins CIM, Eding EH, Verdegem MCJ, Heinsbroek LTN, Schneider O, Blancheton JP, et al. New developments in recirculating aquaculture systems in Europe: a perspective on environmental sustainability. Aquac Eng. 2010;43:83–93.


    Google Scholar
     

  • 4.

    Dalsgaard J, Lund I, Thorarinsdottir R, Drengstig A, Arvonen K, Pedersen PB. Farming different species in RAS in Nordic countries: current status and future perspectives. Aquac Eng. 2013;53:2–13.


    Google Scholar
     

  • 5.

    Ytrestøyl T, Takle H, Kolarevic J, Calabrese S, Timmerhaus G, Rosseland BO, et al. Performance and welfare of Atlantic salmon, Salmo salar L. post-smolts in recirculating aquaculture systems: importance of salinity and water velocity. J World Aquac Soc. 2020;51:373–92.


    Google Scholar
     

  • 6.

    Kristensen T, Åtland Å, Rosten T, Urke HA, Rosseland BO. Important influent-water quality parameters at freshwater production sites in two salmon producing countries. Aquac Eng. 2009;41:53–9.


    Google Scholar
     

  • 7.

    Summerfelt ST, Mathisen F, Holan AB, Terjesen BF. Survey of large circular and octagonal tanks operated at Norwegian commercial smolt and post-smolt sites. Aquac Eng. 2016;74:105–10.


    Google Scholar
     

  • 8.

    Hagspiel V, Hannevik J, Lavrutich M, Naustdal M, Struksnæs H. Real options under technological uncertainty: a case study of investment in a post-smolt facility in Norway. Mar Policy. 2018;88(November 2017):158–66.


    Google Scholar
     

  • 9.

    Rurangwa E, Verdegem MCJ. Microorganisms in recirculating aquaculture systems and their management. Rev Aquac. 2015;7:117–30.


    Google Scholar
     

  • 10.

    Liu D, Straus DL, Pedersen LF, Meinelt T. Periodic bacterial control with peracetic acid in a recirculating aquaculture system and its long-term beneficial effect on fish health. Aquaculture. 2018;485(June):154–9.

    CAS 

    Google Scholar
     

  • 11.

    Liberti L, Notarnicola M. Advanced treatment and disinfection for municipal wastewater reuse in agriculture. Water Sci Technol. 1999;40:235–45.

    CAS 

    Google Scholar
     

  • 12.

    Kitis M. Disinfection of wastewater with peracetic acid: a review. Environ Int. 2004;30:47–55.

    CAS 
    PubMed 

    Google Scholar
     

  • 13.

    Stampi S, De Luca G, Zanetti F. Evaluation of the efficiency of peracetic acid in the disinfection of sewage effluents. J Appl Microbiol. 2001;91:833–8.

    CAS 
    PubMed 

    Google Scholar
     

  • 14.

    Marchand PA, Phan TM, Straus DL, Farmer BD, Stüber A, Meinelt T. Reduction of in vitro growth in Flavobacterium columnare and Saprolegnia parasitica by products containing peracetic acid. Aquac Res. 2012;43:1861–6.

    CAS 

    Google Scholar
     

  • 15.

    Monarca S, Richardso SD, Feretti D, Grottolo M, Thruston AD, Zani C, et al. Mutagenicity and disinfection by-products in surface drinking water disinfected with peracetic acid. Environ Toxicol Chem. 2002;21:309–18.

    CAS 
    PubMed 

    Google Scholar
     

  • 16.

    Sudová E, Straus DL, Wienke A, Meinelt T. Evaluation of continuous 4-day exposure to peracetic acid as a treatment for Ichthyophthirius multifiliis. Parasitol Res. 2010;106:539–42.

    PubMed 

    Google Scholar
     

  • 17.

    Jussila J, Makkonen J, Kokko H. Peracetic acid (PAA) treatment is an effective disinfectant against crayfish plague (Aphanomyces astaci) spores in aquaculture. Aquaculture. 2011;320:37–42.

    CAS 

    Google Scholar
     

  • 18.

    Straus DL, Meinelt T, Farmer BD, Mitchell AJ. Peracetic acid is effective for controlling fungus on channel catfish eggs. J Fish Dis. 2012;35:505–11.

    CAS 
    PubMed 

    Google Scholar
     

  • 19.

    Pedersen LF, Meinelt T, Straus DL. Peracetic acid degradation in freshwater aquaculture systems and possible practical implications. Aquac Eng. 2013;53:65–71.


    Google Scholar
     

  • 20.

    Liu D, Behrens S, Pedersen LF, Straus DL, Meinelt T. Peracetic acid is a suitable disinfectant for recirculating fish-microalgae integrated multi-trophic aquaculture systems. Aquac Rep. 2016;4:136–42.


    Google Scholar
     

  • 21.

    Pedersen L, Lazado C. Decay of peracetic acid in seawater and implications for its chemotherapeutic potential in aquaculture. Aquac Environ Interact. 2020;12:153–65.


    Google Scholar
     

  • 22.

    Straus DL, Meinelt T, Farmer BD, Beck BH. Acute toxicity and histopathology of channel catfish fry exposed to peracetic acid. Aquaculture. 2012;342–343:134–8.


    Google Scholar
     

  • 23.

    Straus DL, Meinelt T, Liu D, Pedersen LF. Toxicity of peracetic acid to fish: variation among species and impact of water chemistry. J World Aquac Soc. 2018;49:715–24.

    CAS 

    Google Scholar
     

  • 24.

    Liu D, Straus DL, Pedersen L-F, Meinelt T. Pulse versus continuous peracetic acid applications: effects on rainbow trout performance, biofilm formation and water quality. Aquac Eng. 2017;77:72–9.


    Google Scholar
     

  • 25.

    Gesto M, Liu D, Pedersen LF, Meinelt T, Straus DL, Jokumsen A. Confirmation that pulse and continuous peracetic acid administration does not disrupt the acute stress response in rainbow trout. Aquaculture. 2018;492(December 2017):190–4.

    CAS 

    Google Scholar
     

  • 26.

    Liu D, Lazado CC, Pedersen LF, Straus DL, Meinelt T. Antioxidative, histological and immunological responses of rainbow trout after periodic and continuous exposures to a peracetic acid-based disinfectant. Aquaculture. 2020;520(January):734956.

    CAS 

    Google Scholar
     

  • 27.

    Soleng M, Johansen L-H, Johnsen H, Johansson GS, Breiland MW, Rørmark L, et al. Atlantic salmon (Salmo salar) mounts systemic and mucosal stress responses to peracetic acid. Fish Shellfish Immunol. 2019;93(June):895–903.

    CAS 
    PubMed 

    Google Scholar
     

  • 28.

    Stiller KT, Kolarevic J, Lazado CC, Gerwins J, Good C, Summerfelt ST, et al. The effects of ozone on Atlantic salmon post-smolt in brackish water—establishing welfare indicators and thresholds. Int J Mol Sci. 2020;21:5109.

    CAS 
    PubMed Central 

    Google Scholar
     

  • 29.

    Lazado CC, Haddeland S, Timmerhaus G, Berg RS, Merkin G, Pittman K, et al. Morphomolecular alterations in the skin mucosa of Atlantic salmon (Salmo salar) after exposure to peracetic acid-based disinfectant. Aquac Rep. 2020;17(February):100368.


    Google Scholar
     

  • 30.

    Wendelaar Bonga SE. The stress response in fish. Physiol Rev. 1997;77:591–625.

    CAS 
    PubMed 

    Google Scholar
     

  • 31.

    Barton BA. Stress in fishes: a diversity of responses with particular reference to changes in circulating corticosteroids. Integr Comp Biol. 2002;42:517–25.

    CAS 
    PubMed 

    Google Scholar
     

  • 32.

    Liu D, Pedersen LF, Straus DL, Kloas W, Meinelt T. Alternative prophylaxis/disinfection in aquaculture – adaptable stress induced by peracetic acid at low concentration and its application strategy in RAS. Aquaculture. 2017;474:82–5.

    CAS 

    Google Scholar
     

  • 33.

    Barton BA, Iwama GK. Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids. Annu Rev Fish Dis. 1991;1:3–26.


    Google Scholar
     

  • 34.

    Mommsen TP, Vijayan MM, Moon TW. Cortisol in teleosts: dynamics, mechanisms of action, and metabolic regulation. Rev Fish Biol Fish. 1999;9:211–68.


    Google Scholar
     

  • 35.

    Fast MD, Hosoya S, Johnson SC, Afonso LOB. Cortisol response and immune-related effects of Atlantic salmon (Salmo salar Linnaeus) subjected to short- and long-term stress. Fish Shellfish Immunol. 2008;24:194–204.

    CAS 
    PubMed 

    Google Scholar
     

  • 36.

    Kahal H, Halama A, Aburima A, Bhagwat AM, Butler AE, Grauman J, et al. Effect of induced hypoglycemia on inflammation and oxidative stress in type 2 diabetes and control subjects. Sci Rep. 2020;10:1–8.


    Google Scholar
     

  • 37.

    Sopinka NM, Donaldson MR, O’Connor CM, Suski CD, Cooke SJ. Stress indicators in fish. In: Schreck CB, Tort L, Farrel AP, Brauner CJ, editors. Fish physiology. Amsterdam: Academic; 2016. p. 405–62.


    Google Scholar
     

  • 38.

    Lines JA, Spence J. Safeguarding the welfare of farmed fish at harvest. Fish Physiol Biochem. 2012;38:153–62.

    CAS 
    PubMed 

    Google Scholar
     

  • 39.

    Ashley PJ. Fish welfare: current issues in aquaculture. Appl Anim Behav Sci. 2007;104:199–235.


    Google Scholar
     

  • 40.

    Polakof S, Arjona FJ, Sangiao-Alvarellos S, Martín del Río MP, Mancera JM, Soengas JL. Food deprivation alters osmoregulatory and metabolic responses to salinity acclimation in gilthead sea bream Sparus auratus. J Comp Physiol B. 2006;176:441–52. https://doi.org/10.1007/s00360-006-0065-z.

    Article 
    PubMed 

    Google Scholar
     

  • 41.

    Salinas I. The mucosal immune system of teleost fish. Biology (Basel). 2015;4:525–39.

    CAS 

    Google Scholar
     

  • 42.

    Cabillon NAR, Lazado CC. Mucosal barrier functions of fish under changing environmental conditions. Fishes. 2019;4:1–10.


    Google Scholar
     

  • 43.

    Tacchi L, Musharrafieh R, Larragoite ET, Crossey K, Erhardt EB, Martin SAM, et al. Nasal immunity is an ancient arm of the mucosal immune system of vertebrates. Nat Commun. 2014;5(May):11.


    Google Scholar
     

  • 44.

    Chupani L, Zuskova E, Stara A, Velisek J, Kouba A. Histological changes and antioxidant enzyme activity in signal crayfish (Pacifastacus leniusculus) associated with sub-acute peracetic acid exposure. Fish Shellfish Immunol. 2016;48:190–5.

    CAS 
    PubMed 

    Google Scholar
     

  • 45.

    Chalmers L, Vera LM, Taylor JF, Adams A, Migaud H. Comparative ploidy response to experimental hydrogen peroxide exposure in Atlantic salmon (Salmo salar). Fish Shellfish Immunol. 2018;81:354–67.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 46.

    Kosenko EA, Kaminsky YG, Stavrovskaya IG, Sirota TV, Kondrashova MN. The stimulatory effect of negative air ions and hydrogen peroxide on the activity of superoxide dismutase. FEBS Lett. 1997;410:309–12.

    CAS 
    PubMed 

    Google Scholar
     

  • 47.

    Doyotte A, Cossu C, Jacquin M, Babutb M, Vaseural P. Antioxidant enzymes, glutathione and lipid peroxidation as relevant biomarkers of experimental or field exposure in the gills and the digestive gland of the freshwater bivalve Unio tumidus. Aquat Toxicol. 1997;39:93–110.

    CAS 

    Google Scholar
     

  • 48.

    Solé M, Rodríguez S, Papiol V, Maynou F, Cartes JE. Xenobiotic metabolism markers in marine fi sh with different trophic strategies and their relationship to ecological variables. Comp Biochem Physiol. 2009;149:83–9.


    Google Scholar
     

  • 49.

    van der Oost R, Beyer J, Vermeulen NPE. Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Pharmacol. 2003;13(February):57–149.

    PubMed 

    Google Scholar
     

  • 50.

    Olsvik PA, Kristensen T, Waagbø R, Rosseland BO, Tollefsen K. mRNA expression of antioxidant enzymes (SOD, CAT and GSH-Px) and lipid peroxidative stress in liver of Atlantic salmon (Salmo salar) exposed to hyperoxic water during smoltification. Comp Biochem Physiol C Toxicol Pharmacol. 2005;141:314–23.

    CAS 
    PubMed 

    Google Scholar
     

  • 51.

    Secombes CJ, Wang T, Bird S. The interleukins of fish. Dev Comp Immunol. 2011;35:1336–45.

    CAS 
    PubMed 

    Google Scholar
     

  • 52.

    Elenkov IJ, Chrousos GP. Stress hormones, proinflammatory and antiinflammatory cytokines, and autoimmunity. Ann N Y Acad Sci. 2002;966:290–303.

    CAS 
    PubMed 

    Google Scholar
     

  • 53.

    Ingerslev HC, Rønneseth A, Pettersen EF, Wergeland HI. Differential expression of immune genes in Atlantic salmon (Salmo salar L.) challenged intraperitoneally or by cohabitation with IPNV. Scand J Immunol. 2009;69:90–8.

    CAS 
    PubMed 

    Google Scholar
     

  • 54.

    Basu N, Todgham AE, Ackerman PA, Bibeau MR, Nakano K, Schulte PM, et al. Heat shock protein genes and their functional significance in fish. Gene. 2002;295:173–83.

    CAS 
    PubMed 

    Google Scholar
     

  • 55.

    Iwama GK, Afonso LOB, Todgham A, Ackerman P, Nakano K. Are hsps suitable for indicating stressed states in fish? J Exp Biol. 2004;207:15–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 56.

    Shephard KL. Functions for fish mucus. Rev Fish Biol Fish. 1994;4:401–29.


    Google Scholar
     

  • 57.

    Sveen LR, Grammes FT, Ytteborg E, Takle H, Jørgensen SM. Genome-wide analysis of Atlantic salmon (Salmo salar) mucin genes and their role as biomarkers. PLoS One. 2017;12:1–15.


    Google Scholar
     

  • 58.

    Fischer BM, Voynow JA, Ghio AJ. COPD: balancing oxidants and antioxidants. Int J COPD. 2015;10:261–76.


    Google Scholar
     

  • 59.

    Wilkins NP, Jancsar S. Temporal variations in the skin of Atlantic salmon Salmo salar L. J Fish Biol. 1979;15:299–307.


    Google Scholar
     

  • 60.

    Wolf JC, Baumgartner WA, Blazer VS, Camus AC, Engelhardt JA, Fournie JW, et al. Nonlesions, misdiagnoses, missed diagnoses, and other interpretive challenges in fish histopathology studies: a guide for investigators, authors, reviewers, and readers. Toxicol Pathol. 2015;43:297–325.

    PubMed 

    Google Scholar
     

  • 61.

    Strzyzewska E, Szarek J, Babinska I. Morphologic evaluation of the gills as a tool in the diagnostics of pathological conditions in fish and pollution in the aquatic environment: a review. Vet Med (Praha). 2016;61:123–32.


    Google Scholar
     

  • 62.

    Roberts RJ. Fish pathology. 4th ed. Oxford: Wiley; 2012.


    Google Scholar
     

  • 63.

    Vatsos IN, Kotzamanis Y, Henry M, Angelidis P, Alexis MN. Monitoring stress in fish by applying image analysis to their skin mucous cells. Eur J Histochem. 2010;54:107–11.


    Google Scholar
     

  • 64.

    Hansen A, Zielinski BS. Diversity in the olfactory epithelium of bony fishes: development, lamellar arrangement, sensory neuron cell types and transduction components. J Neurocytol. 2005;34:183–208.

    CAS 
    PubMed 

    Google Scholar
     

  • 65.

    Ghosh SK, Chakrabarti P. Histological and scanning electron microscopic organization and functional aspects of the surface olfactory epithelium of the freshwater minor carp, Puntius sophore (Hamilton). Proc Zool Soc. 2010;63:115–9.


    Google Scholar
     

  • 66.

    Kasumyan AO. The olfactory system in fish: structure, function, and role in behavior. J Ichthyol. 2004;44:S180–223.


    Google Scholar
     

  • 67.

    Terjesen BF, Summerfelt ST, Nerland S, Ulgenes Y, Fjæra SO, Megård Reiten BK, et al. Design, dimensioning, and performance of a research facility for studies on the requirements of fish in RAS environments. Aquac Eng. 2013;54:49–63.


    Google Scholar
     

  • 68.

    Lazado CC, Voldvik V. Temporal control of responses to chemically induced oxidative stress in the gill mucosa of Atlantic salmon (Salmo salar). J Photochem Photobiol B Biol. 2020;205(August 2019):111851.

    CAS 

    Google Scholar
     

  • 69.

    Noble C, Gismervik K, Iversen MH, Kolarevic J, Nilsson J, Stien LH, et al. Welfare indicators for farmed Atlantic salmon: tools for assessing fish welfare. 2018.


    Google Scholar
     

  • 70.

    Reiser S, Schroeder JP, Wuertz S, Kloas W, Hanel R. Histological and physiological alterations in juvenile turbot (Psetta maxima, L.) exposed to sublethal concentrations of ozone-produced oxidants in ozonated seawater. Aquaculture. 2010;307:157–64.

    CAS 

    Google Scholar
     

  • 71.

    Lazado CC, Kumaratunga HPS, Nagasawa K, Babiak I, Giannetto A, Fernandes JMO. Daily rhythmicity of clock gene transcripts in Atlantic cod fast skeletal muscle. PLoS One. 2014;9:1–12.


    Google Scholar
     

  • 72.

    Solberg MF, Kvamme BO, Nilsen F, Glover KA. Effects of environmental stress on mRNA expression levels of seven genes related to oxidative stress and growth in Atlantic salmon Salmo salar L. of farmed, hybrid and wild origin. BMC Res Notes. 2012;5:672.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 73.

    Olsvik PA, Torstensen BE, Hemre GI, Sanden M, Waagbo R. Hepatic oxidative stress in Atlantic salmon (Salmo salar L.) transferred from a diet based on marine feed ingredients to a diet based on plant ingredients. Aquac Nutr. 2011;17:424–36.


    Google Scholar
     

  • 74.

    Olsvik PA, Torstensen BE, Berntssen MHG. Effects of complete replacement of fish oil with plant oil on gastrointestinal cell death, proliferation and transcription of eight genes’ encoding proteins responding to cellular stress in Atlantic salmon Salmo salar L. J Fish Biol. 2007;71:550–68.

    CAS 

    Google Scholar
     

  • 75.

    Garcia de la serrana D, Johnston IA. Expression of heat shock protein (Hsp90) paralogues is regulated by amino acids in skeletal muscle of Atlantic Salmon. PLoS One. 2013;8:1–14.


    Google Scholar
     

  • 76.

    Sanden M, Olsvik PA. Intestinal cellular slocalisation of PCNA protein and CYP1A mRNA in Atlantic salmon Salmo salar L. exposed to a model toxicant. BMC Physiol. 2009;9:1–11.


    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)