• 1.

    Hong K-W, Oh B-S. Overview of personalized medicine in the disease genomic era. BMB Rep. 2010;43(10):643–8.

    CAS 
    PubMed 

    Google Scholar
     

  • 2.

    Giallourakis C, Henson C, Reich M, Xie X, Mootha VK. Disease gene discovery through integrative genomics. Annu Rev Genomics Hum Genet. 2005;6(1):381–406.

    CAS 
    PubMed 

    Google Scholar
     

  • 3.

    Hurle MR, Yang L, Xie Q, Rajpal DK, Sanseau P, Agarwal P. Computational drug repositioning: from data to therapeutics. Clin Pharmacol Ther. 2013;93(4):335–41.

    CAS 
    PubMed 

    Google Scholar
     

  • 4.

    Köhler S, Bauer S, Horn D, Robinson PN. Walking the interactome for prioritization of candidate disease genes. The American Journal of Human Genetics. 2008;82(4):949–58.

    PubMed 

    Google Scholar
     

  • 5.

    Vanunu O, Magger O, Ruppin E, Shlomi T, Sharan R, Wasserman WW: Associating Genes and protein complexes with disease via network propagation. PLOSComput Biol 2010, 6.

  • 6.

    Jia P, Zheng S, Long J, Zheng W, Zhao Z. dmGWAS: dense module searching for genome-wide association studies in protein–protein interaction networks. Bioinformatics. 2011;27(1):95–102.

    CAS 
    PubMed 

    Google Scholar
     

  • 7.

    Wu M, Zeng W, Liu W, Zhang Y, Chen T, Jiang R: Integrating embeddings of multiple gene networks to prioritize complex disease-associated genes. In: 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM): 2017. IEEE: 208–215.

  • 8.

    Lee I, Blom UM, Wang PI, Shim JE, Marcotte EM. Prioritizing candidate disease genes by network-based boosting of genome-wide association data. Genome Res. 2011;21(7):1109–21.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 9.

    Hou L, Chen M, Zhang CK, Cho J, Zhao H. Guilt by rewiring: gene prioritization through network rewiring in genome wide association studies. Hum Mol Genet. 2014;23(10):2780–90.

    CAS 
    PubMed 

    Google Scholar
     

  • 10.

    Luo P, Tian L-P, Ruan J, Wu F-X. Disease gene prediction by integrating ppi networks, clinical rna-seq data and omim data. IEEE/ACM Trans Comput Biol Bioinf. 2017;16(1):222–32.


    Google Scholar
     

  • 11.

    Wang Q, Yu H, Zhao Z, Jia P. EW_dmGWAS: edge-weighted dense module search for genome-wide association studies and gene expression profiles. Bioinformatics. 2015;31(15):2591–4.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 12.

    Nam Y, Jhee JH, Cho J, Lee J-H, Shin H. Disease gene identification based on generic and disease-specific genome networks. Bioinformatics. 2019;35(11):1923–30.

    CAS 
    PubMed 

    Google Scholar
     

  • 13.

    Luo P, Tian L-P, Chen B, Xiao Q, Wu F-X. Ensemble disease gene prediction by clinical sample-based networks. BMC Bioinformatics. 2020;21(2):1–12.


    Google Scholar
     

  • 14.

    Tomczak K, Czerwińska P, Wiznerowicz M. The Cancer genome atlas (TCGA): an immeasurable source of knowledge. Contemp Oncol. 2015;19(1A):A68.


    Google Scholar
     

  • 15.

    Han P, Yang P, Zhao P, Shang S, Liu Y, Zhou J, Gao X, Kalnis P: GCN-MF: disease-gene association identification by graph convolutional networks and matrix factorization. In: Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining: 2019. 705–713.

  • 16.

    Natarajan N, Dhillon IS. Inductive matrix completion for predicting gene–disease associations. Bioinformatics. 2014;30(12):i60–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 17.

    Singh-Blom UM, Natarajan N, Tewari A, Woods JO, Dhillon IS, Marcotte EM: Prediction and validation of gene-disease associations using methods inspired by social network analyses. PloS one 2013, 8(5):e58977.

  • 18.

    Zeng X, Ding N, Rodríguez-Patón A, Zou Q. Probability-based collaborative filtering model for predicting gene–disease associations. BMC Med Genomics. 2017;10(5):45–53.

    CAS 

    Google Scholar
     

  • 19.

    Luo P, Li Y, Tian L-P, Wu F-X. Enhancing the prediction of disease–gene associations with multimodal deep learning. Bioinformatics. 2019;35(19):3735–42.

    CAS 
    PubMed 

    Google Scholar
     

  • 20.

    Wishart DS, Craig K, Guo AC, Cheng D, Savita S, Dan T, Bijaya G, Murtaza H: DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res 2008, 36(suppl_1):D901-D906.

  • 21.

    Paul SM, Mytelka DS, Dunwiddie CT, Persinger CC, Munos BH, Lindborg SR, Schacht AL: How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat Rev Drug Discov 2010:203–214.

  • 22.

    Peter DA, Grondin CJ, Kelley LH, Cynthia SR, Daniela S, King BL, Wiegers TC, Mattingly CJ. The comparative toxicogenomics database’s 10th year anniversary: update 2015. Nucleic Acids Res. 2015;D1:914–20.


    Google Scholar
     

  • 23.

    Lipscomb CE. Medical subject headings (MeSH). Bull Med Libr Assoc. 2000;88(3):265–6.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    Fan W, Shang J, Li F, Sun Y, Liu JX: IDSSIM: an lncRNA functional similarity calculation model based on an improved disease semantic similarity method. BMC Bioinform 2020, 21(1).

  • 25.

    Kibbe WA, Arze C, Felix V, Mitraka E, Schriml LM: Disease Ontology 2015 update: An expanded and updated database of Human diseases for linking biomedical knowledge through disease data. Nucleic Acids Research 2014, 43(D1).

  • 26.

    Wang JZ, Du Z, Payattakool R, Yu PS, Chen C. A new method to measure the semantic similarity of GO terms. Bioinformatics. 2007;23(10):1274–81.

    CAS 
    PubMed 

    Google Scholar
     

  • 27.

    Van Laarhoven T, Nabuurs SB, Marchiori E. Gaussian interaction profile kernels for predicting drug–target interaction. Bioinformatics. 2011;27(21):3036–43.

    PubMed 

    Google Scholar
     

  • 28.

    Zhao Y, Chen X, Yin J. Adaptive boosting-based computational model for predicting potential miRNA-disease associations. Bioinformatics. 2019;35(22):4730–8.

    CAS 
    PubMed 

    Google Scholar
     

  • 29.

    Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Hirakawa M: From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Research 2006, 34(Database issue):D354–357.

  • 30.

    Smith TF, Waterman MS. Identification of common molecular subsequences. J Mol Biol. 1981;147(1):195–7.

    CAS 
    PubMed 

    Google Scholar
     

  • 31.

    Chen X, Yan C, Luo C, Ji W, Zhang Y, Dai Q. Constructing lncRNA functional similarity network based on lncRNA-disease associations and disease semantic similarity. Sci Rep. 2015;5:11338.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 32.

    Ho TK: Random decision forests. In: Document Analysis and Recognition, 1995, Proceedings of the Third International Conference on: 1995.

  • 33.

    Demšar J. Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res. 2006;7:1–30.


    Google Scholar
     

  • 34.

    Yao D, Zhan X, Zhan X, Kwoh CK, Li P, Wang J. A random forest based computational model for predicting novel lncRNA-disease associations. BMC Bioinform. 2020;21:1–18.


    Google Scholar
     

  • 35.

    Olayan RS, Ashoor H, Bajic VB. DDR: efficient computational method to predict drug–target interactions using graph mining and machine learning approaches. Bioinformatics. 2018;34(7):1164–73.

    CAS 
    PubMed 

    Google Scholar
     

  • 36.

    Zhou R, Lu Z, Luo H, Xiang J, Zeng M, Li M. NEDD: a network embedding based method for predicting drug-disease associations. BMC Bioinform. 2020;21(13):1–12.

    CAS 

    Google Scholar
     

  • 37.

    Yao D, Zhan X, Kwoh C-K. An improved random forest-based computational model for predicting novel miRNA-disease associations. BMC Bioinform. 2019;20(1):1–14.


    Google Scholar
     

  • 38.

    Fan Y, Chen M, Pan X: GCRFLDA: scoring lncRNA-disease associations using graph convolution matrix completion with conditional random field. Briefings in Bioinformatics 2021.

  • 39.

    Fu G, Wang J, Domeniconi C, Yu G. Matrix factorization-based data fusion for the prediction of lncRNA–disease associations. Bioinformatics. 2018;34(9):1529–37.

    CAS 
    PubMed 

    Google Scholar
     

  • 40.

    Gong K, Guo G, Gerber DE, Gao B, Peyton M, Huang C, Minna JD, Hatanpaa KJ, Kernstine K, Cai L. TNF-driven adaptive response mediates resistance to EGFR inhibition in lung cancer. J Clin Investig. 2018;128(6):2500–18.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 41.

    Widowati W, Jasaputra DK, Sumitro SB, Widodo MA, Mozef T, Rizal R, Kusuma HSW, Laksmitawati DR, Murti H, Bachtiar I. Effect of interleukins (IL-2, IL-15, IL-18) on receptors activation and cytotoxic activity of natural killer cells in breast cancer cell. Afr Health Sci. 2020;20(2):822–32.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 42.

    Song N, Liu S, Zhang J, Liu J, Xu L, Liu Y, Qu X. Cetuximab-induced MET activation acts as a novel resistance mechanism in colon cancer cells. Int J Mol Sci. 2014;15(4):5838–51.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 43.

    Lakkireddy S, Aula S, Kapley A, Swamy A, Digumarti RR, Kutala VK, Jamil K. Association of vascular endothelial growth factor A (VEGFA) and its receptor (VEGFR2) gene polymorphisms with risk of chronic myeloid leukemia and influence on clinical outcome. Mol Diagn Ther. 2016;20(1):33–44.

    CAS 
    PubMed 

    Google Scholar
     

  • 44.

    Xiong J, Bian J, Wang L, Zhou J, Wang Y, Zhao Y, Wu L, Hu J, Li B, Chen S. Dysregulated choline metabolism in T-cell lymphoma: role of choline kinase-α and therapeutic targeting. Blood Cancer J. 2015;5(3):e287–e287.


    Google Scholar
     

  • 45.

    Zhou X, Jiang Y, Li Q, Huang Z, Yang H, Wei C: Aberrant ALOX5 Activation correlates with HER2 status and mediates breast cancer biological activities through multiple mechanisms. BioMed research international 2020, 2020.

  • 46.

    Liu S, Fan W, Gao X, Huang K, Ding C, Ma G, Yan L, Song S. Estrogen receptor alpha regulates the Wnt/β-catenin signaling pathway in colon cancer by targeting the NOD-like receptors. Cell Signal. 2019;61:86–92.

    CAS 
    PubMed 

    Google Scholar
     

  • 47.

    Li C, Wang C. Current evidences on IL1B polymorphisms and lung cancer susceptibility: a meta-analysis. Tumor Biol. 2013;34(6):3477–82.

    CAS 

    Google Scholar
     

  • 48.

    Ozawa T, Hashiguchi Y, Yagi T, Fukushima Y, Shimada R, Hayama T, Tsuchiya T, Nozawa K, Iinuma H, Ishihara S. Angiotensin I-converting enzyme inhibitors/angiotensin II receptor blockers may reduce tumor recurrence in left-sided and early colorectal cancers. Int J Colorectal Dis. 2019;34(10):1731–9.

    PubMed 

    Google Scholar
     

  • 49.

    Makar GA, Holmes JH, Yang Y-X: Angiotensin-converting enzyme inhibitor therapy and colorectal cancer risk. JNCI  2014, 106(2).

  • 50.

    Romero AM, Tafe L: CTNNB1 mutations and co-mutations in non-small cell lung cancer. In: Laboratory investigation: 2020. Nature publishing group 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013–1917 USA: 1805–1806.

  • 51.

    Zhou C, Li W, Shao J, Zhao J, Chen C. Analysis of the clinicopathologic characteristics of lung adenocarcinoma with CTNNB1 mutation. Front Genet. 2020;10:1367.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 52.

    Matsuda Y, Saoo K, Yamakawa K, Yokohira M, Suzuki S, Kuno T, Kamataki T, Imaida K. Overexpression of CYP2A6 in human colorectal tumors. Cancer Sci. 2007;98(10):1582–5.

    CAS 
    PubMed 

    Google Scholar
     

  • 53.

    Li J, Ji Z, Luo X, Li Y, Yuan P, Long J, Shen N, Lu Q, Zeng Q, Zhong R: Urinary bisphenol A and its interaction with ESR1 genetic polymorphism associated with non-small cell lung cancer: findings from a case-control study in Chinese population. Chemosphere 2020, 254:126835.

  • 54.

    Bekku S, Mochizuki H, Yamamoto T, Ueno H, Takayama E, Tadakuma T. Expression of carbonic anhydrase I or II and correlation to clinical aspects of colorectal cancer. Hepatogastroenterology. 2000;47(34):998–1001.

    CAS 
    PubMed 

    Google Scholar
     

  • 55.

    Cheng X, Yang Y, Fan Z, Yu L, Bai H, Zhou B, Wu X, Xu H, Fang M, Shen A. MKL1 potentiates lung cancer cell migration and invasion by epigenetically activating MMP9 transcription. Oncogene. 2015;34(44):5570–81.

    CAS 
    PubMed 

    Google Scholar
     

  • 56.

    Voutsadakis IA: The Landscape of PIK3CA Mutations in Colorectal Cancer. Clinical Colorectal Cancer 2021.

  • 57.

    Blackhall FH, Pintilie M, Michael M, Leighl N, Feld R, Tsao M-S, Shepherd FA. Expression and prognostic significance of kit, protein kinase B, and mitogen-activated protein kinase in patients with small cell lung cancer. Clin Cancer Res. 2003;9(6):2241–7.

    CAS 
    PubMed 

    Google Scholar
     

  • 58.

    Belaguli NS, Aftab M, Rigi M, Zhang M, Albo D, Berger DH: GATA6 promotes colon cancer cell invasion by regulating urokinase plasminogen activator gene expression. Neoplasia 2010, 12(11):856-IN851.

  • 59.

    Somwar R, Erdjument-Bromage H, Larsson E, Shum D, Lockwood WW, Yang G, Sander C, Ouerfelli O, Tempst PJ, Djaballah H. Superoxide dismutase 1 (SOD1) is a target for a small molecule identified in a screen for inhibitors of the growth of lung adenocarcinoma cell lines. Proc Natl Acad Sci. 2011;108(39):16375–80.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 60.

    Morita M, Le Marchand L, Kono S, Yin G, Toyomura K, Nagano J, Mizoue T, Mibu R, Tanaka M, Kakeji Y. Genetic polymorphisms of CYP2E1 and risk of colorectal cancer: the Fukuoka Colorectal Cancer Study. Cancer Epidemiol Prevent Biomark. 2009;18(1):235–41.

    CAS 

    Google Scholar
     

  • 61.

    Wu H, Liu HY, Liu WJ, Shi YL, Bao D. miR-377-5p inhibits lung cancer cell proliferation, invasion, and cell cycle progression by targeting AKT1 signaling. J Cell Biochem. 2019;120(5):8120–8.

    CAS 

    Google Scholar
     

  • 62.

    Zhang Z-y, Gao X-h, Ma M-y, Zhao C-l, Zhang Y-l, Guo S-s. CircRNA_101237 promotes NSCLC progression via the miRNA-490-3p/MAPK1 axis. Sci Rep. 2020;10(1):1–10.


    Google Scholar
     

  • 63.

    Kontos CK, Papageorgiou SG, Diamantopoulos MA, Scorilas A, Bazani E, Vasilatou D, Gkontopoulos K, Glezou E, Stavroulaki G, Dimitriadis G. mRNA overexpression of the hypoxia inducible factor 1 alpha subunit gene (HIF1A): An independent predictor of poor overall survival in chronic lymphocytic leukemia. Leuk Res. 2017;53:65–73.

    CAS 
    PubMed 

    Google Scholar
     

  • 64.

    Rausch SM, Gonzalez BD, Clark MM, Patten C, Felten S, Liu H, Li Y, Sloan J, Yang P. SNPs in PTGS2 and LTA predict pain and quality of life in long term lung cancer survivors. Lung Cancer. 2012;77(1):217–23.

    PubMed 

    Google Scholar
     

  • 65.

    Mohammadzadeh Z, Omidkhoda A, Chahardouli B, Hoseinzadeh G, Moghaddam KA, Mousavi SA, Rostami S. The impact of ICAM-1, CCL2 and TGM2 gene polymorphisms on differentiation syndrome in acute promyelocytic leukemia. BMC Cancer. 2021;21(1):1–7.


    Google Scholar
     

  • 66.

    Zhou C, Martinez E, Di Marcantonio D, Solanki-Patel N, Aghayev T, Peri S, Ferraro F, Skorski T, Scholl C, Fröhling S. JUN is a key transcriptional regulator of the unfolded protein response in acute myeloid leukemia. Leukemia. 2017;31(5):1196–205.

    CAS 
    PubMed 

    Google Scholar
     

  • 67.

    Mamoor S: Differential expression of nuclear receptor subfamily 3 group C member 1 in cancers of the breast. 2021.

  • 68.

    Prochazka KT, Pregartner G, Rücker FG, Heitzer E, Pabst G, Wölfler A, Zebisch A, Berghold A, Döhner K, Sill H. Clinical implications of subclonal TP53 mutations in acute myeloid leukemia. Haematologica. 2019;104(3):516.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 69.

    Wen Y, Huang Z, Zhang X, Gao B, He Y. Correlation between PON1 gene polymorphisms and breast cancer risk: a Meta-analysis. Int J Clin Exp Med. 2015;8(11):20343.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 70.

    Bobin-Dubigeon C, Jaffré I, Joalland M-P, Classe J-M, Campone M, Hervé M, Bard J-M. Paraoxonase 1 (PON1) as a marker of short term death in breast cancer recurrence. Clin Biochem. 2012;45(16–17):1503–5.

    CAS 
    PubMed 

    Google Scholar
     

  • 71.

    Küçükcankurt F, Erbilgin Y, Fırtına S, Ng ÖH, Karakaş Z, Celkan T, Ünüvar A, Özbek U, Sayitoğlu M. PTEN and AKT1 variations in childhood T-Cell acute lymphoblastic leukemia. Turkish J Hematol. 2020;37(2):98.


    Google Scholar
     

  • 72.

    Kim JW, Gautam J, Kim JE, Kim J, Kang KW. Inhibition of tumor growth and angiogenesis of tamoxifen-resistant breast cancer cells by ruxolitinib, a selective JAK2 inhibitor. Oncol Lett. 2019;17(4):3981–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 73.

    Elhoseiny S, El-Wakil M, Fawzy M, Rahman AA. GSTP1 (Ile105Val) gene polymorphism: risk and treatment response in chronic myeloid leukemia. J Cancer Ther. 2013;5(01):1.


    Google Scholar
     

  • 74.

    Kagita Sailaja D, Rao DN, Rao DR, Vishnupriya S. Association of the GSTP1 gene (Ile105Val) polymorphism with chronic myeloid leukemia. Asian Pac J Cancer Prev. 2010;11(2):461–4.

    PubMed 

    Google Scholar
     

  • 75.

    Rosette C, Roth RB, Oeth P, Braun A, Kammerer S, Ekblom J, Denissenko MF. Role of ICAM1 in invasion of human breast cancer cells. Carcinogenesis. 2005;26(5):943–50.

    CAS 
    PubMed 

    Google Scholar
     

  • 76.

    Sawai CM, Freund J, Oh P, Ndiaye-Lobry D, Bretz JC, Strikoudis A, Genesca L, Trimarchi T, Kelliher MA, Clark M. Therapeutic targeting of the cyclin D3: CDK4/6 complex in T cell leukemia. Cancer Cell. 2012;22(4):452–65.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 77.

    Zou G, Zhang X, Wang L, Li X, Xie T, Zhao J, Yan J, Wang L, Ye H, Jiao S. Herb-sourced emodin inhibits angiogenesis of breast cancer by targeting VEGFA transcription. Theranostics. 2020;10(15):6839.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 78.

    Shah NP, Cortes JE, Martinelli G, Smith BD, Clarke E, Copland M, Strauss L, Talpaz M. Dasatinib plus smoothened (SMO) inhibitor BMS-833923 in chronic myeloid leukemia (CML) with resistance or suboptimal response to a prior tyrosine kinase inhibitor (TKI): phase I study CA180323. In.: American Society of Hematology Washington, DC; 2014.


    Google Scholar
     

  • 79.

    Bonapace L, Coissieux M-M, Wyckoff J, Mertz KD, Varga Z, Junt T, Bentires-Alj M. Cessation of CCL2 inhibition accelerates breast cancer metastasis by promoting angiogenesis. Nature. 2014;515(7525):130–3.

    CAS 
    PubMed 

    Google Scholar
     

  • 80.

    Feigelson HS, Teras LR, Diver WR, Tang W, Patel AV, Stevens VL, Calle EE, Thun MJ, Bouzyk M. Genetic variation in candidate obesity genes ADRB2, ADRB3, GHRL, HSD11B1, IRS1, IRS2, and SHC1 and risk for breast cancer in the Cancer Prevention Study II. Breast Cancer Res. 2008;10(4):1–11.


    Google Scholar
     

  • 81.

    Correia C, Schneider PA, Dai H, Dogan A, Maurer MJ, Church AK, Novak AJ, Feldman AL, Wu X, Ding H. BCL2 mutations are associated with increased risk of transformation and shortened survival in follicular lymphoma. Blood J Am Soc Hematol. 2015;125(4):658–67.

    CAS 

    Google Scholar
     

  • 82.

    Jin H, Choi H, Kim ES, Lee HH, Cho H, Moon A. Natural killer cells inhibit breast cancer cell invasion through downregulation of urokinase-type plasminogen activator. Oncol Rep. 2021;45(1):299–308.

    PubMed 

    Google Scholar
     

  • 83.

    Belfiore L, Saunders DN, Ranson M, Vine KL. N-alkylisatin-loaded liposomes target the urokinase plasminogen activator system in breast cancer. Pharmaceutics. 2020;12(7):641.

    CAS 
    PubMed Central 

    Google Scholar
     

  • 84.

    Ibrahim NY, Sami RM, Nasr AS. GSTP1 and CYP1A1 gene polymorphisms and non-hodgkin lymphoma. Lab Med. 2012;43(4):22–6.


    Google Scholar
     

  • 85.

    Nakamichi I, Tomita Y, Zhang B, Sugiyama H, Kanakura Y, Fukuhara S, Hino M, Kanamaru A, Ogawa H, Aozasa K. Correlation between promoter hypermethylation of GSTP1 and response to chemotherapy in diffuse large B cell lymphoma. Ann Hematol. 2007;86(8):557–64.

    CAS 
    PubMed 

    Google Scholar
     

  • 86.

    Weiss M, Michael J, Pesce A, DiPersio L. Heterogeneity of beta 2-microglobulin in human breast carcinoma. Lab Invest J Tech Methods Pathol. 1981;45(1):46–57.

    CAS 

    Google Scholar
     

  • 87.

    Nakashima M, Watanabe M, Nakano K, Uchimaru K, Horie R: Differentiation of Hodgkin lymphoma cells by reactive oxygen species and regulation by heme oxygenase‐1 through HIF‐1α. Cancer Science 2021.

  • 88.

    Wang F, Gatica D, Ying ZX, Peterson LF, Kim P, Bernard D, Saiya-Cork K, Wang S, Kaminski MS, Chang AE. Follicular lymphoma–associated mutations in vacuolar ATPase ATP6V1B2 activate autophagic flux and mTOR. J Clin Investig. 2019;129(4):1626–40.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 89.

    Jeong S, Kim BG, Kim DY, Kim BR, Kim JL, Park SH, Na YJ, Jo MJ, Yun HK, Jeong YA. Cannabidiol overcomes oxaliplatin resistance by enhancing NOS3-and SOD2-induced autophagy in human colorectal cancer cells. Cancers. 2019;11(6):781.

    CAS 
    PubMed Central 

    Google Scholar
     

  • 90.

    Eskelund CW, Dahl C, Hansen JW, Westman M, Kolstad A, Pedersen LB, Montano-Almendras CP, Husby S, Freiburghaus C, Ek S. TP53 mutations identify younger mantle cell lymphoma patients who do not benefit from intensive chemoimmunotherapy. Blood J Am Soc Hematol. 2017;130(17):1903–10.

    CAS 

    Google Scholar
     

  • 91.

    Zenz T, Kreuz M, Fuge M, Klapper W, Horn H, Staiger AM, Winter D, Helfrich H, Huellein J, Hansmann ML. TP53 mutation and survival in aggressive B cell lymphoma. Int J Cancer. 2017;141(7):1381–8.

    CAS 
    PubMed 

    Google Scholar
     

  • 92.

    Sainz J, Rudolph A, Hein R, Hoffmeister M, Buch S, Von Schönfels W, Hampe J, Schafmayer C, Völzke H, Frank B. Association of genetic polymorphisms in ESR2, HSD17B1, ABCB1, and SHBG genes with colorectal cancer risk. Endocrine Related Cancer. 2011;18(2):265.

    CAS 
    PubMed 

    Google Scholar
     

  • 93.

    Mashhadi MA, Arbabi N, Sargazi S, Kazemi-Lomedasht F, Jahantigh D, Miri-Moghaddam E: Association of VEGFA gene polymorphisms with susceptibility to non-Hodgkin’s lymphoma: Evidences from population-based and in silico studies. Gene Rep 2020, 20:100696.

  • 94.

    Kiyohara C, Yoshimasu K, Takayama K, Nakanishi Y. NQO1, MPO, and the risk of lung cancer: a HuGE review. Genet Med. 2005;7(7):463–78.

    CAS 
    PubMed 

    Google Scholar
     

  • 95.

    Wang Y-Z, Wu K-P, Wu A-B, Yang Z-C, Li J-M. Mo Y-l, Xu M, Wu B, Yang Z-x: MMP-14 overexpression correlates with poor prognosis in non-small cell lung cancer. Tumor Biol. 2014;35(10):9815–21.

    CAS 

    Google Scholar
     

  • 96.

    Zhou H, Wu A, Fu W, Lv Z, Zhang Z. Significance of semaphorin-3A and MMP-14 protein expression in non-small cell lung cancer. Oncol Lett. 2014;7(5):1395–400.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 97.

    Jung YY, Jung WH, Koo JS: BRAF mutation in breast cancer by BRAF V600E mutation-specific antibody. 2016.

  • 98.

    Kloth M, Ruesseler V, Engel C, Koenig K, Peifer M, Mariotti E, Kuenstlinger H, Florin A, Rommerscheidt-Fuss U, Koitzsch U. Activating ERBB2/HER2 mutations indicate susceptibility to pan-HER inhibitors in Lynch and Lynch-like colorectal cancer. Gut. 2016;65(8):1296–305.

    CAS 
    PubMed 

    Google Scholar
     

  • 99.

    Maurer CA, Friess H, Kretschmann B, Zimmermann A, Stauffer A, Baer HU, Korc M, Buchler MW. Increased expression of erbB3 in colorectal cancer is associated with concomitant increase in the level of erbB2. Hum Pathol. 1998;29(8):771–7.

    CAS 
    PubMed 

    Google Scholar
     

  • 100.

    Zhuoyu G, Siyuan L, Xiao Z, Zhou T, Jun L. Expression and role of MMP-14 protein in invasion and metastasis of stomach carcinoma. Chongqing Med. 2015;10:1364–6.


    Google Scholar
     

  • 101.

    Wong CI, Yap HL, Lim SG, Guo JY, Goh BC, Lee SC. Lack of somatic ErbB2 tyrosine kinase domain mutations in hepatocellular carcinoma. Hepatol Res. 2008;38(8):838–41.

    CAS 
    PubMed 

    Google Scholar
     

  • 102.

    Bekaii-Saab T, Williams N, Plass C, Calero MV, Eng C. A novel mutation in the tyrosine kinase domain of ERBB2 in hepatocellular carcinoma. BMC Cancer. 2006;6(1):1–5.


    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)