• 1.

    Calvo JR, Gonzalez YC, Maldonado MD. The role of melatonin in the cells of the innate immunity: a review. J Pineal Res. 2013;55:103–20.

    CAS 
    PubMed 

    Google Scholar
     

  • 2.

    Cen H, Wang T, Liu H, Tian D, Zhang Y. Melatonin application improves salt tolerance of alfalfa (Medicago sativa L.) by enhancing antioxidant capacity. Plants (Basel). 2020;9(2):220.

    CAS 

    Google Scholar
     

  • 3.

    Chen Q, Qi WB, Reiter RJ, Wei W, Wang BM. Exogenously applied melatonin stimulates root growth and raises endogenous indoleacetic acid in roots of etiolated seedlings of Brassica juncea. J Plant Physiol. 2009;166:324–8.

    CAS 
    PubMed 

    Google Scholar
     

  • 4.

    Choi S, Dadakhujaev S, Ryu H, Kim T, Kim EK. Melatonin protects against oxidative stress in granular corneal dystrophy type 2 corneal fibroblasts by mechanisms that involve membrane melatonin receptors. J Pineal Res. 2011;51:94–103.

    CAS 
    PubMed 

    Google Scholar
     

  • 5.

    Ding F, Chen M, Sui N, Wang BS. Ca2+ significantly enhanced development and salt-secretion rate of salt glands of Limonium bicolor under NaCl treatment. S Afr J Bot. 2010;76:95–101.

    CAS 

    Google Scholar
     

  • 6.

    Draper HH, Hadley M. Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol. 1990;186:421–31.

    CAS 
    PubMed 

    Google Scholar
     

  • 7.

    Duan HM, Ma YC, Liu RR, Li Q, Yang Y, Song J. Effect of combined waterlogging and salinity stresses on euhalophyte Suaeda glauca. Plant Physiol Biochem. 2018;127:231–7.

    CAS 
    PubMed 

    Google Scholar
     

  • 8.

    Feng ZT, Deng YQ, Fan H, Sun QJ, Sui N, Wang BS. Effects of NaCl stress on the growth and photosynthetic characteristics of Ulmus pumila. L seedlings in sand culture Photosynthetica. 2014b;52:313–20.

    CAS 

    Google Scholar
     

  • 9.

    Feng ZT, Deng YQ, Zhang SC, Liang X, Yuan F, Hao JL, et al. K (+) accumulation in the cytoplasm and nucleus of the salt gland cells of Limonium bicolor accompanies increased rates of salt secretion under NaCl treatment using NanoSIMS. Plant Sci. 2015;238:286–96.

    CAS 
    PubMed 

    Google Scholar
     

  • 10.

    Feng ZT, Sun QJ, Deng YQ, Sun SF, Zhang JG, Wang BS. Study on pathway and characteristics of ion secretion of salt glands of Limonium bicolor. Acta Physiol Plant. 2014a;36:2729–41.

    CAS 

    Google Scholar
     

  • 11.

    Flowers TJ, Colmer TD. Salinity tolerance in halophytes. New Phytol. 2008;179:945–63.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 12.

    Foyer C, Noctor G. Oxygen processing in photosynthesis: regulation and signalling. New Phytol. 2000;146:359–88.

    CAS 

    Google Scholar
     

  • 13.

    Foyer CH. Reactive oxygen species, oxidative signaling and the regulation of photosynthesis. Environ Exp Bot. 2018;154:134–42.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 14.

    Gao W, Zhang Y, Feng Z, Bai Q, He J, Wang Y. Effects of melatonin on antioxidant capacity in naked oat seedlings under drought stress. Molecules. 2018;23(7):1580.

    PubMed Central 

    Google Scholar
     

  • 15.

    Gong B, Yan Y, Wen D, Shi Q. Hydrogen peroxide produced by NADPH oxidase:a novel downstream signaling pathway in melatonin-induced stress toelrance in Solanum lycopersicum. Physiol Plant. 2017;160:396–409.

    CAS 
    PubMed 

    Google Scholar
     

  • 16.

    Guo J, Suo S, Wang BS. Sodium chloride improves seed vigour of the euhalophyte Suaeda salsa. Seed Sci Res. 2015;25:335–44.

    CAS 

    Google Scholar
     

  • 17.

    Guo JR, Li YD, Han G, Song J, Wang BS. NaCl markedly improved the reproductive capacity of the euhalophyte Suaeda salsa. Funct Plant Biol. 2018a;45:350–61.

    CAS 
    PubMed 

    Google Scholar
     

  • 18.

    Guo YY, Tian SS, Liu SS, Wang WQ, Sui N. Energy dissipation and antioxidant enzyme system protect photosystem II of sweet sorghum under drought stress. Photosynthetica. 2018b;56:861–72.

    CAS 

    Google Scholar
     

  • 19.

    Han N, Lan W, He X, Shao Q, Wang BS. Expression of a Suaeda salsa, vacuolar H+/Ca2+, transporter gene in arabidopsis, contributes to physiological changes in salinity. Plant Mol Biol Rep. 2011;30:470–7.


    Google Scholar
     

  • 20.

    Hardeand R, Madrid JA, Tan DX, Reiter RJ. Melatonin, the circadian multioscillator system and health: the need for detailed analyses of peripheral melatonin signaling. J Pineal Res. 2012;34:233–41.


    Google Scholar
     

  • 21.

    Lee DH, Kim YS, Lee CB. The inductive responses of the antioxidant enzymes by salt stress in the rice (Oryza sativa L.). J Plant Physiol. 2001;158:737–45.

    CAS 

    Google Scholar
     

  • 22.

    Li H, Chang J, He C, Wang Z, Gu X, Wei C, et al. Exogenous melatonin confers salt stress tolerance to watermelon by improving photosynthesis and redox homeostasis. Front. Plant Sci. 2017:8:295.

  • 23.

    Li J, Liu J, Zhu T, Zhao C, Li L, Chen M. The role of melatonin in salt stress responses. Int J Mol Sci. 2019;20(7):1735.

    CAS 
    PubMed Central 

    Google Scholar
     

  • 24.

    Li J, Yuan F, Liu Y, Zhang M, Liu Y, Zhao Y, et al. Exogenous melatonin enhances salt secretion from salt glands by upregulating the expression of ion transporter and vesicle transport genes in Limonium bicolor. BMC Plant Biol. 2020;20:493.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 25.

    Li T, Liu RJ, He XH, Wang BS. Enhancement of superoxide dismutase and catalase activities and salt tolerance of euhalophyte Suaeda salsa L. by mycorrhizal fungus glomus mosseae. Pedosphere. 2012;22:217–24.

    CAS 

    Google Scholar
     

  • 26.

    Lin J, Li JP, Yuan F, Yang Z, Wang BS, Chen M. Transcriptome profiling of genes involved in photosynthesis in Elaeagnus angustifolia L. under salt stress. Photosynthetica. 2018;56:998–1009.

    CAS 

    Google Scholar
     

  • 27.

    Liu DD, Sun XS, Liu L, Shi HD, Chen SY, Zhao DK. Overexpression of the melatonin synthesis-related gene SlCOMT1 improves the resistance of tomato to salt stress. Molecules. 2019;24(8):1514.

    CAS 
    PubMed Central 

    Google Scholar
     

  • 28.

    Liu SS, Wang WQ, Li M, Wan SB, Sui N. Antioxidants and unsaturated fatty acids are involved in salt tolerance in peanut. Acta Physiol Plant. 2017;39(9):207.

    CAS 

    Google Scholar
     

  • 29.

    Miransari M, Rangbar B, Khajeh K, Tehranchi MM, Rusta Azad R, Nagafi F, Rahnemaie R. Salt stress in plants. 2013; ISBN: 978–1–4614-6107-4. Chapter 7, salt stress and MAPK signaling in plants.

  • 30.

    Pathak RK, Taj G, Pandey D, Arora S, Kumar A. Modeling of the MAPK machinery activation in response to various abiotic and biotic stresses in plants by a system biology approach. Bioinformation. 2013;9:443–9.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 31.

    Rahman M, Mostofa MG, Keya SS, Rahman A, Das AK, Islam R, et al. Acetic acid improves drought acclimation in soybean: an integrative response of photosynthesis, osmoregulation, mineral uptake and antioxidant defense. Physiol Plant. 2021a;172(2):334–50.

    CAS 
    PubMed 

    Google Scholar
     

  • 32.

    Rahman MM, Mostofa MG, Keya SS, Siddiqui MN, Ansary MMU, Das AK, et al. Adaptive mechanisms of halophytes and their potential in improving salinity tolerance in plants. Int J Mol Sci. 2021b;22:10733.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Rahman MM, Mostofa MG, Rahman MA, Islam MR, Keya SS, Das AK, et al. Acetic acid: a cost-effective agent for mitigation of seawater-induced salt toxicity in mung bean. Sci Rep. 2019;23;9(1):15186.


    Google Scholar
     

  • 34.

    Rodriguez C, Mayo JC, Sainz RM, Antolin I, Herrera F, Martin V, et al. Regulation of antioxidant enzymes: a significant role for melatonin. J Pineal Res. 2004;36:1–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 35.

    Roncarati F, Rijstenbil JW, Pistocchi R. Photosynthetic performance, oxidative damage and antioxidants in Cylindrotheca closterium in response to high irradiance. UVB radiation and salinity Mar Biol. 2008;153:965–73.

    CAS 

    Google Scholar
     

  • 36.

    Rozema J, Riphagen I. Physiology and ecologic relevance of salt secretion by the salt gland of Glaux maritima L. Oecologia. 1977;29(4):349–57.

    PubMed 

    Google Scholar
     

  • 37.

    Ruiz-Lozano JM, Porcel R, Azcon R, Aroca R. Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: new challenges in physiological and molecular studies. J Exp Bot. 2012;63:4033–44.

    CAS 
    PubMed 

    Google Scholar
     

  • 38.

    Shao Q, Han N, Ding T, Zhou F, Wang BS. SsHKT1,1 is a potassium transporter of the C3 halophyte Suaeda salsa that is involved in salt tolerance. Funct Plant Biol. 2014;41:790–802.

    CAS 
    PubMed 

    Google Scholar
     

  • 39.

    Song J, Wang BS. Using euhalophytes to understand salt tolerance and to develop saline agriculture: Suaeda salsa as a promising model. Ann Bot. 2015;115:541–53.

    CAS 
    PubMed 

    Google Scholar
     

  • 40.

    Sreenivasulu N, Grimm B, Wobus U, Weschke W. Differential response of antioxidant compounds to salinity stress in salt-tolerant and salt-sensitive seedlings of fox-tail millet (Setariaitalica). Physiol Plant. 2000;109:435–42.

    CAS 

    Google Scholar
     

  • 41.

    Sui N, Han GL. Salt-induced photoinhibition of PSII is alleviated in halophyte Thellungiella halophila, by increases of unsaturated fatty acids in membrane lipids. Acta Physiol Plant. 2014;36:983–92.

    CAS 

    Google Scholar
     

  • 42.

    Sun S, Wen D, Yang W, Meng Q, Shi Q, Gong B. Overexpression of caffeic acid O-methyltransferase 1 (COMT1) increases melatonin level and salt stress tolerance in tomato plant. J Plant Growth Regul. 2019:1–15.

  • 43.

    Takahashi S, Murata N. How do environmental stresses accelerate photo inhibition? Trends Plant Sci. 2008;13:178–82.

    CAS 
    PubMed 

    Google Scholar
     

  • 44.

    Tan DX, Reiter RJ, Manchester LC, Yan M, El-Sawi M, Sainz RM, et al. Chemical and physical properties and potential mechanisms: melatonin as a broad spectrum antioxidant and free radical scavenger. Curr Top Med Chem. 2002;2:181–97.

    CAS 
    PubMed 

    Google Scholar
     

  • 45.

    Wang LY, Liu JL, Wang WX, Sun Y. Exogenous melatonin improves growth and photosynthetic capacity of cucumber under salinity-induced stress. Photosynthetica. 2016;54(1):19–27.


    Google Scholar
     

  • 46.

    Wang P, Yin L, Liang D, Li C, Ma F, Yue Z. Delayed senescence of apple leaves by exogenous melatonin treatment: toward regulating the ascorbate-glutathione cycle. J Pineal Res. 2012;53:11–20.

    PubMed 

    Google Scholar
     

  • 47.

    Wen D, Gong B, Sun S, Liu S, Wang X, Yang F, et al. Promoting roles of melatonin in adventitious root development of Solanum lycopersicum L. by regulating auxin and nitric oxide signaling. Front. Plant Sci. 2016;7:718.


    Google Scholar
     

  • 48.

    Xia XJ, Wang YJ, Zhou YH, Tao Y, Mao WH, Shi K, et al. Reactive oxygenspecies are involved in brassinosteroids-induced stress tolerance in cucumber. Plant Physiol. 2009;150:801–14.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 49.

    Xu Y, Liu R, Sui N, Shi WW, Wang L, Tian CY, et al. Changes in endogenous hormones and seed-coat phenolics during seed storage of two Suaeda salsa populations. Aust J Bot. 2016;4:325–32.


    Google Scholar
     

  • 50.

    Yan Y, Jing X, Tang H, Li X, Gong B, Shi Q. Using transcriptome to discover a novel melatonin-induced sodic alkaline stress resistant pathway in Solanum lycopersicum L. Plant Cell Physiol. 2019;60:2051–64.

    CAS 
    PubMed 

    Google Scholar
     

  • 51.

    Yang Z, Wang Y, Wei X, Zhao X, Wang B. Transcription profiles of genes related to hormonal regulations under salt stress in sweet sorghum. Plant Mol Biol Rep. 2017;35:1–14.

    CAS 

    Google Scholar
     

  • 52.

    Yuan F, Liang X, Li Y, Yin S, Wang B. Methyl jasmonate improves tolerance to high salt stress in the recretohalophyte Limonium bicolor. Funct Plant Biol. 2019;46:82–92.

    CAS 

    Google Scholar
     

  • 53.

    Yuan F, Lyu MJ, Leng BY, Zheng GY, Feng ZT, Li PH, et al. Comparative transcriptome analysis of developmental stages of the Limonium bicolor leaf generates insights into salt gland differentiation. Plant Cell Environ. 2015;38:1637–57.

    CAS 
    PubMed 

    Google Scholar
     

  • 54.

    Yuan F, Lyu MJA, Leng BY, Zhu XG, Wang BS. The transcriptome of NaCl-treated Limonium bicolor, leaves reveal the genes controlling salt secretion of salt gland. Plant Mol Biol. 2016;91:241–56.

    CAS 
    PubMed 

    Google Scholar
     

  • 55.

    Zaidi I, Ebel C, Belgaroui N, Ghorbel M, Amara I, Hanin M. The wheat MAP kinase phosphatase 1 alleviates salt stress and increases antioxidant activities in Arabidopsis. J Plant Physiol. 2016;193:12–21.

    CAS 
    PubMed 

    Google Scholar
     

  • 56.

    Zhang N, Zhang HJ, Zhao B, Sun QQ, Cao YY, Li R, et al. The RNA-seq approach to discriminate gene expression profiles in response to melatonin on cucumber lateral root formation. J Pineal Res. 2014;56:39–50.

    CAS 
    PubMed 

    Google Scholar
     

  • 57.

    Zhu Y, Guo MJ, Song JB, Zhang SY, Guo R, Hou DR, et al. Roles of endogenous melatonin in resistance to Botrytis cinerea infection in an Arabidopsis model. Front Plant Sci. 2021;12:683228.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)