• 1.

    Feynman R. P. There’s plenty of room at the bottom. Engineering and science. 1959, p. 23.

  • 2.

    Pokropivny VV, Skorokhod VV. Classification of nanostructures by dimensionality and concept of surface forms engineering in nanomaterial science. Mat Sci Eng C-Mater. 2007;27(5–8):990–3. https://doi.org/10.1016/j.msec.2006.09.023.

    CAS 
    Article 

    Google Scholar
     

  • 3.

    Anandhi S. Nano-pesticides in pest management. J Entomol Zool Stud. 2020;8(4):685–90.


    Google Scholar
     

  • 4.

    Selyutina OY, Khalikov SS, Polyakov NE. Arabinogalactan and glycyrrhizin based nanopesticides as novel delivery systems for plant protection. Environ Sci Pollut Res. 2020;27:5864–72. https://doi.org/10.1007/s11356-019-07397-9.

    CAS 
    Article 

    Google Scholar
     

  • 5.

    Selyutina OY, Apanasenko IE, Khalikov SS, Polyakov NE. Natural poly-and oligosaccharides as novel delivery systems for plant protection compounds. J Agric Food Chem. 2017;65(31):6582–7.

    CAS 
    Article 

    Google Scholar
     

  • 6.

    Roco MC, Williams RS, Alivisatos P. Nanotechnology research directions: IWGN workshop report: vision for nanotechnology in the next decade. Berlin: Springer; 2000.

    Book 

    Google Scholar
     

  • 7.

    Scott N, Chen H. Nanoscale science and engineering for agriculture and food systems. Ind Biotechnol. 2013;9(1):17–8. https://doi.org/10.1089/ind.2013.1555.

    Article 

    Google Scholar
     

  • 8.

    de Oliveira JL, Campos EVR, Bakshi M, Abhilash PC, Fraceto LF. Application of nanotechnology for the encapsulation of botanical insecticides for sustainable agriculture: prospects and promises. Biotechnol Adv. 2014;32(8):1550–61. https://doi.org/10.1016/j.biotechadv.2014.10.010.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 9.

    Huang B, Chen F, Shen Y, Qian K, Wang Y, Sun C, Zhao X, Cui B, Gao F, Zeng Z, Cui H. Advances in targeted pesticides with environmentally responsive controlled release by nanotechnology. Nanomaterials. 2018;8(2):102. https://doi.org/10.3390/nano8020102.

    CAS 
    Article 
    PubMed Central 

    Google Scholar
     

  • 10.

    Kumar V, Vaid K, Bansal SA, Kim KH. Nanomaterial-based immunosensors for ultrasensitive detection of pesticides/herbicides: current status and perspectives. Biosens Bioelectron. 2020;165: 112382. https://doi.org/10.1016/j.bios.2020.112382.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 11.

    Mahmoudpour M, Karimzadeh Z, Ebrahimi G, Hasanzadeh M, Ezzati Nazhad Dolatabadi J. Synergizing functional nanomaterials with aptamers based on electrochemical strategies for pesticide detection: current status and perspectives. Crit Rev Anal Chem. 2021. https://doi.org/10.1080/10408347.2021.1919987.

    Article 
    PubMed 

    Google Scholar
     

  • 12.

    Adams CB, Erickson JE, Bunderson L. A mesoporous silica nanoparticle technology applied in dilute nutrient solution accelerated establishment of zoysiagrass. Agrosyst Geosci Environ. 2020;3(1): e20006. https://doi.org/10.1002/agg2.20006.

    Article 

    Google Scholar
     

  • 13.

    Taşkın MB, Şahin Ö, Taskin H, Atakol O, Inal A, Gunes A. Effect of synthetic nano-hydroxyapatite as an alternative phosphorus source on growth and phosphorus nutrition of lettuce (Lactuca sativa L.) plant. J Plant Nutr. 2018;41(9):1148–54. https://doi.org/10.1080/01904167.2018.1433836.

    CAS 
    Article 

    Google Scholar
     

  • 14.

    Fincheira P, Tortella G, Seabra AB, Quiroz A, Diez MC, Rubilar O. Nanotechnology advances for sustainable agriculture: current knowledge and prospects in plant growth modulation and nutrition. Planta. 2021;254(4):1–25. https://doi.org/10.1007/s00425-021-03714-0.

    CAS 
    Article 

    Google Scholar
     

  • 15.

    Dikbaş N, Cinisli KT. Microbial metabolites powered by nanoparticles could be used as pesticides in future? (NanoBioPecdicides). BJI. 2019;23(4):1–4. https://doi.org/10.9734/bji/2019/v23i430088.

    CAS 
    Article 

    Google Scholar
     

  • 16.

    Lade BD, Gogle DP. Nano-biopesticides: synthesis and applications in plant safety. In: Abd-Elsalam K, Prasad R, editors. Nanobiotechnology applications in plant protection. Nanotechnology in the life sciences. Cham: Springer; 2019.


    Google Scholar
     

  • 17.

    Ten G-B. chemical innovations that will change our world: IUPAC identifies emerging technologies in chemistry with potential to make our planet more sustainable. Chem Int. 2019;41(2):12–7. https://doi.org/10.1515/ci-2019-0203.

    CAS 
    Article 

    Google Scholar
     

  • 18.

    Giraldo JP, Landry MP, Faltermeier SM, McNicholas TP, Iverson NM, Boghossian AA, Reuel FN, Hilmer JA, Sen F, Brew AJ, Strano MS. Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat Mater. 2014;13(4):400–8. https://doi.org/10.1038/nmat3890.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 19.

    Su C, Ji Y, Liu S, Gao S, Cao S, Xu X, Zhou C, Liu Y. Fluorescence-labeled abamectin nanopesticide for comprehensive control of pinewood nematode and Monochamus alternatus hope. ACS Sustain Chem Eng. 2020;8(44):16555–64. https://doi.org/10.1021/acssuschemeng.0c05771.

    CAS 
    Article 

    Google Scholar
     

  • 20.

    García-Gómez C, Obrador A, González D, Babín M, Fernández MD. Comparative study of the phytotoxicity of ZnO nanoparticles and Zn accumulation in nine crops grown in a calcareous soil and an acidic soil. Sci Total Environ. 2018;644:770–80. https://doi.org/10.1016/j.scitotenv.2018.06.356.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 21.

    Li P, Huang Y, Fu C, Jiang SX, Peng W, Jia Y, Peng H, Zhang P, Manzie N, Mitter N, Xu ZP. Eco-friendly biomolecule-nanomaterial hybrids as next-generation agrochemicals for topical delivery. EcoMat. 2021. https://doi.org/10.1002/eom2.12132.

    Article 

    Google Scholar
     

  • 22.

    Pulizzi F. Nano in the future of crops. Nat Nanotechnol. 2019;14(6):507. https://doi.org/10.1038/s41565-019-0475-1.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 23.

    Xu T, Ma C, Aytac Z, Hu X, Ng KW, White JC, Demokritou P. Enhancing agrichemical delivery and seedling development with biodegradable, tunable, biopolymer-based nanofiber seed coatings. ACS Sustain Chem Eng. 2020;8(25):9537–48. https://doi.org/10.1021/acssuschemeng.0c02696.

    CAS 
    Article 

    Google Scholar
     

  • 24.

    Guha T, Gopal G, Kundu R, Mukherjee A. Nanocomposites for delivering agrochemicals: a comprehensive review. J Agric Food Chem. 2020;68(12):3691–702. https://doi.org/10.1021/acs.jafc.9b06982.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 25.

    Malakar A, Kanel SR, Ray C, Snow DD, Nadagouda MN. Nanomaterials in the environment, human exposure pathway, and health effects: A review. Sci Total Environ. 2020. https://doi.org/10.1016/j.scitotenv.2020.143470.

    Article 
    PubMed 

    Google Scholar
     

  • 26.

    Hussain CM. Handbook of nanomaterials for industrial applications. Amsterdam: Elsevier; 2018.


    Google Scholar
     

  • 27.

    Zheng W, Luo B, Hu X. The determinants of farmers’ fertilizers and pesticides use behavior in China: an explanation based on label effect. J Clean Prod. 2020;272: 123054. https://doi.org/10.1016/j.jclepro.2020.123054.

    Article 

    Google Scholar
     

  • 28.

    Kaur R, Mavi GK, Raghav S, Khan I. Pesticides classification and its impact on environment. Int J Curr Microbiol Appl Sci. 2019;8(3):1889–97.

    CAS 
    Article 

    Google Scholar
     

  • 29.

    Kole, R. K. Improved pesticide formulation for sustainable crop protection. In: Ensuring food safety, security and sustainability through crop protection; 2021, vol. 5, p. 50–5. ISBN: 978-81-950908-4-6.

  • 30.

    Zheng L, Cao C, Chen Z, Cao L, Huang Q, Song B. Efficient pesticide formulation and regulation mechanism for improving the deposition of droplets on the leaves of rice (Oryza sativa L.). Pest Manag Sci. 2021;77(7):3198–207. https://doi.org/10.1002/ps.6358.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 31.

    Chen H, Zhi H, Liang J, Yu M, Cui B, Zhao X, Sun C, Wang Y, Cui H, Zeng Z. Development of leaf-adhesive pesticide nanocapsules with pH-responsive release to enhance retention time on crop leaves and improve utilization efficiency. J Mater Chem B. 2021;9(3):783–92. https://doi.org/10.1039/D0TB02430A.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 32.

    Pang Y, Qin Z, Wang S, Yi C, Zhou M, Lou H, Qiu X. Preparation and application performance of lignin-polyurea composite microcapsule with controlled release of avermectin. Colloid Polym Sci. 2020;298(8):1001–12. https://doi.org/10.1007/s00396-020-04664-x.

    CAS 
    Article 

    Google Scholar
     

  • 33.

    Zhu H, Shen Y, Cui J, Wang A, Li N, Wang C, Cui B, Sun C, Zhao X, Wang C, Gao F, Zhan S, Guo L, Zhang L, Zeng Z, Wang Y, Cui H. Avermectin loaded carboxymethyl cellulose nanoparticles with stimuli-responsive and controlled release properties. Ind Crop Prod. 2020;152: 112497. https://doi.org/10.1016/j.indcrop.2020.112497.

    CAS 
    Article 

    Google Scholar
     

  • 34.

    Kaziem AE, Gao Y, Zhang Y, Qin X, Xiao Y, Zhang Y, You H, Li J, He S. α-amylase triggered carriers based on cyclodextrin anchored hollow mesoporous silica for enhancing insecticidal activity of avermectin against Plutella xylostella. J Hazard Mater. 2018;359:213–21. https://doi.org/10.1016/j.jhazmat.2018.07.059.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 35.

    Zhou M, Xiong Z, Yang D, Pang Y, Wang D, Qiu X. Preparation of slow release nanopesticide microspheres from benzoyl lignin. Holzforschung. 2018;72(7):599–607. https://doi.org/10.1515/hf-2017-0155.

    CAS 
    Article 

    Google Scholar
     

  • 36.

    Liu B, Zhang J, Chen C, Wang D, Tian G, Zhang G, Cai D, Wu Z. Infrared-light-responsive controlled-release pesticide using hollow carbon microspheres@ polyethylene glycol/α-cyclodextrin gel. J Agric Food Chem. 2021;69(25):6981–8. https://doi.org/10.1021/acs.jafc.1c01265.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 37.

    Wu D, Qin M, Xu D, Wang L, Liu C, Ren J, Zhou G, Chen C, Yang F, Li Y, Zhao Y, Huang R, Pourtaheri S, Kang C, Kamata M, Chen ISY, He Z, Wen J, Chen W, Lu Y. A bioinspired platform for effective delivery of protein therapeutics to the central nervous system. Adv Mater. 2019;31(18):1807557. https://doi.org/10.1002/adma.201807557.

    CAS 
    Article 

    Google Scholar
     

  • 38.

    Heidary M, Karimzadeh J, Jafari S, Negahban M, Shakarami J. Aphicidal activity of urea–formaldehyde nanocapsules loaded with the Thymus daenensis Celak essential oil on Brevicoryne brassicae L. Int J Trop Insect Sci. 2021. https://doi.org/10.1007/s42690-021-00646-w.

    Article 

    Google Scholar
     

  • 39.

    Zheng F, Li Y, Zhang Z, Jia J, Hu P, Zhang C, Xu H. Novel strategy with an eco-friendly polyurethane system to improve rainfastness of tea saponin for highly efficient rice blast control. J Clean Prod. 2020;264: 121685. https://doi.org/10.1016/j.jclepro.2020.121685.

    CAS 
    Article 

    Google Scholar
     

  • 40.

    Luo J, Zhang DX, Jing T, Liu G, Cao H, Li BX, Hou Y, Liu F. Pyraclostrobin loaded lignin-modified nanocapsules: delivery efficiency enhancement in soil improved control efficacy on tomato Fusarium crown and root rot. Chem Eng J. 2020;394: 124854. https://doi.org/10.1016/j.cej.2020.124854.

    CAS 
    Article 

    Google Scholar
     

  • 41.

    Xiang Y, Zhang G, Chi Y, Cai D, Wu Z. Fabrication of a controllable nanopesticide system with magnetic collectability. Chem Eng J. 2017;328:320–30. https://doi.org/10.1016/j.cej.2017.07.046.

    CAS 
    Article 

    Google Scholar
     

  • 42.

    Shan Y, Cao L, Xu C, Zhao P, Cao C, Li F, Xu B, Huang Q. Sulfonate-functionalized mesoporous silica nanoparticles as carriers for controlled herbicide diquat dibromide release through electrostatic interaction. Int J Mol Sci. 2019;20(6):1330. https://doi.org/10.3390/ijms20061330.

    CAS 
    Article 
    PubMed Central 

    Google Scholar
     

  • 43.

    Xiang Y, Zhang G, Chen C, Liu B, Cai D, Wu Z. Fabrication of a pH-responsively controlled-release pesticide using an attapulgite-based hydrogel. ACS Sustainable Chem Eng. 2018;6(1):1192–201. https://doi.org/10.1021/acssuschemeng.7b03469.

    CAS 
    Article 

    Google Scholar
     

  • 44.

    Kabir M, Tisha F, Nayan H, Islam M, Kashem M, Uddin M, Islam M, Meah M. Determining an effective and economic fungicide spray schedule for reducing blast of wheat. Int J Agr Innov Innov Technol. 2021;11(1):10–6. https://doi.org/10.3329/ijarit.v11i1.54461.

    Article 

    Google Scholar
     

  • 45.

    Li H, Jing T, Li T, Huang X, Gao Y, Zhu J, Lin J, Zhang P, Li B, Mu W. Ecotoxicological effects of pyraclostrobin on tilapia (Oreochromis niloticus) via various exposure routes. Environ Pollut. 2021;285: 117188. https://doi.org/10.1016/j.envpol.2021.117188.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 46.

    Li M, Xu W, Hu D, Song B. Preparation and application of pyraclostrobin microcapsule formulations. Colloid Surface A. 2018;553:578–85. https://doi.org/10.1016/j.colsurfa.2018.06.009.

    CAS 
    Article 

    Google Scholar
     

  • 47.

    Chi Y, Chen C, Zhang G, Ye Z, Su X, Ren X, Wu Z. Fabrication of magnetic-responsive controlled-release herbicide by a palygorskite-based nanocomposite. Colloids Surf, B. 2021;208: 112115. https://doi.org/10.1016/j.colsurfb.2021.112115.

    CAS 
    Article 

    Google Scholar
     

  • 48.

    Wu F, Harper BJ, Crandon LE, Harper SL. Assessment of Cu and CuO nanoparticle ecological responses using laboratory small-scale microcosms. Environ Sci Nano. 2020;7(1):105–15. https://doi.org/10.1039/C9EN01026B.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 49.

    Jang S, Mergaert P, Ohbayashi T, Ishigami K, Shigenobu S, Itoh H, Kikuchi Y. Dual oxidase enables insect gut symbiosis by mediating respiratory network formation. PNAS. 2021;118(10): e2020922118. https://doi.org/10.1073/pnas.2020922118.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 50.

    Lu Z, Deng J, Wang H, Zhao X, Luo Z, Yu C, Zhang Y. Multifunctional role of a fungal pathogen-secreted laccase 2 in evasion of insect immune defense. Environ Microbiol. 2021;23(2):1256–74. https://doi.org/10.1111/1462-2920.15378.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 51.

    Bharani RSA, Namasivayam SKR. Biogenic silver nanoparticles mediated stress on developmental period and gut physiology of major lepidopteran pest Spodoptera litura (Fab.) (Lepidoptera: Noctuidae)—an eco-friendly approach of insect pest control. J Environ Chem Eng. 2017;5(1):453–67. https://doi.org/10.1016/j.jece.2016.12.023.

    CAS 
    Article 

    Google Scholar
     

  • 52.

    Meng X, Abdlli N, Wang N, Lü P, Nie Z, Dong X, Lu S, Chen K. Effects of Ag nanoparticles on growth and fat body proteins in silkworms (Bombyx mori). Biol Trace Elem Res. 2017;180(2):327–37. https://doi.org/10.1007/s12011-017-1001-7.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 53.

    Anandhi S, Saminathan VR, Yasotha P, Saravanan PT, Rajanbabu V. Nano-pesticides in pest management. J Entomol Zool Stud. 2020;8(4):685–90.


    Google Scholar
     

  • 54.

    de la Rosa G, Vázquez-Núñez E, Molina-Guerrero C, et al. Interactions of nanomaterials and plants at the cellular level: current knowledge and relevant gaps. Nanotechnol Environ Eng. 2021;6:7. https://doi.org/10.1007/s41204-020-00100-1.

    CAS 
    Article 

    Google Scholar
     

  • 55.

    Faiz MB, Amal R, Marquis CP, Harry EJ, Sotiriou GA, Rice SA, Gunawan C. Nanosilver and the microbiological activity of the particulate solids versus the leached soluble silver. Nanotoxicology. 2018;12(3):263–73. https://doi.org/10.1080/17435390.2018.1434910.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 56.

    Tang S, Zheng J. Antibacterial activity of silver nanoparticles: structural effects. Adv Healthc Mater. 2018;7(13):1701503. https://doi.org/10.1002/adhm.201701503.

    CAS 
    Article 

    Google Scholar
     

  • 57.

    Shafie RM, Salama AM, Farroh KY. Silver nanoparticles activity against tomato spotted wilt virus. Middle East J Appl Sci. 2018;7:1251–67.


    Google Scholar
     

  • 58.

    Campos EV, Proença PL, Oliveira JL, Bakshi M, Abhilash PC, Fraceto LF. Use of botanical insecticides for sustainable agriculture: future perspectives. Ecol Indic. 2019;105:483–95. https://doi.org/10.1016/j.ecolind.2018.04.038.

    CAS 
    Article 

    Google Scholar
     

  • 59.

    Zheng L, Cao C, Cao L, Chen Z, Huang Q, Song B. Bounce behavior and regulation of pesticide solution droplets on rice leaf surfaces. J Agric Food Chem. 2018;66(44):11560–8. https://doi.org/10.1021/acs.jafc.8b02619.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 60.

    Zhao X, Cui H, Wang Y, Sun C, Cui B, Zeng Z. Development strategies and prospects of nano-based smart pesticide formulation. J Agric Food Chem. 2018;66(26):6504–12. https://doi.org/10.1021/acs.jafc.7b02004.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 61.

    Liu B, Wang Y, Yang F, Wang X, Shen H, Cui H, Wu D. Construction of a controlled-release delivery system for pesticides using biodegradable PLA-based microcapsules. Colloid Surface B. 2016;144:38–45. https://doi.org/10.1016/j.colsurfb.2016.03.084.

    CAS 
    Article 

    Google Scholar
     

  • 62.

    Wang A, Wang Y, Sun C, Wang C, Cui B, Zhao X, Zeng Z, Yao J, Yang D, Liu G. Fabrication, characterization, and biological activity of avermectin nano-delivery systems with different particle sizes. Nanoscale Res Lett. 2018;13(1):1–7. https://doi.org/10.1186/s11671-017-2405-1.

    CAS 
    Article 

    Google Scholar
     

  • 63.

    Li W, Wang Q, Zhang F, Shang H, Bai S, Sun J. pH-sensitive thiamethoxam nanoparticles based on bimodal mesoporous silica for improving insecticidal efficiency. Roy Soc open Sci. 2021;8(2): 201967. https://doi.org/10.1098/rsos.201967.

    CAS 
    Article 

    Google Scholar
     

  • 64.

    Yin Y, Yang M, Xi J, Cai W, Yi Y, He G, Dai Y, Zhou T, Jiang M. A sodium alginate-based nano-pesticide delivery system for enhanced in vitro photostability and insecticidal efficacy of phloxine B. Carbohydr Polym. 2020;247: 116677. https://doi.org/10.1016/j.carbpol.2020.116677.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 65.

    Wang Y, Song S, Chu X, Feng W, Li J, Huang X, Zhou N, Shen J. A new temperature-responsive controlled-release pesticide formulation–poly (N-isopropylacrylamide) modified graphene oxide as the nanocarrier for lambda-cyhalothrin delivery and their application in pesticide transportation. Colloid Surface A. 2021;612: 125987. https://doi.org/10.1016/j.colsurfa.2020.125987.

    CAS 
    Article 

    Google Scholar
     

  • 66.

    Chun S, Feng J. Preparation of abamectin nanoparticles by flash nanoprecipitation for extended photostability and sustained pesticide release. ACS Appl Nano Mater. 2021;4(2):1228–34. https://doi.org/10.1021/acsanm.0c02847.

    CAS 
    Article 

    Google Scholar
     

  • 67.

    Chen XX, Liu YM, Zhao QY, Cao WQ, Chen XP, Zou CQ. Health risk assessment associated with heavy metal accumulation in wheat after long-term phosphorus fertilizer application. Environ Pollut. 2020;262: 114348. https://doi.org/10.1016/j.envpol.2020.114348.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 68.

    Zhu Q, Liu X, Hao T, Zeng M, Shen J, Zhang F, de Vries W. Cropland acidification increases risk of yield losses and food insecurity in China. Environ Pollut. 2020;256: 113145. https://doi.org/10.1016/j.envpol.2019.113145.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 69.

    Lowe BS, Leer DR, Frey JW, Caskey BJ. Occurrence and distribution of algal biomass and its relation to nutrients and selected basin characteristics in Indiana streams, 201–205. Sci Invest Rep. 2008. https://doi.org/10.3133/sir20085203.

    Article 

    Google Scholar
     

  • 70.

    Singh MD. Nano-fertilizers is a new way to increase nutrients use efficiency in crop production. Int J Agri Sci 2017; 9(7), 3831–83. http://www.bioinfopublication.org/jouarchive.php?opt=&jouid=BPJ0000217.

  • 71.

    Djaya L, Istifadah N, Hartati S, Joni IM. In vitro study of plant growth promoting rhizobacteria (PGPR) and endophytic bacteria antagonistic to Ralstonia solanacearum formulated with graphite and silica nano particles as a biocontrol delivery system (BDS). Biocatal Agric Biotechnol. 2019;19: 101153. https://doi.org/10.1016/j.bcab.2019.101153.

    Article 

    Google Scholar
     

  • 72.

    Benzon HRL, Rubenecia MRU, Ultra VU Jr, Lee SC. Nano-fertilizer affects the growth, development, and chemical properties of rice. Int J Agro and Agri Res. 2015;7(1):105–17.


    Google Scholar
     

  • 73.

    Haydar MS, Ghosh S, Mandal P. Application of iron oxide nanoparticles as micronutrient fertilizer in mulberry propagation. J Plant Growth Regul. 2021. https://doi.org/10.1007/s00344-021-10413-3.

    Article 

    Google Scholar
     

  • 74.

    Raliya R, Saharan V, Dimkpa C, Biswas P. Nanofertilizer for precision and sustainable agriculture: current state and future perspectives. J Agric Food Chem. 2017;66(26):6487–503. https://doi.org/10.1021/acs.jafc.7b02178.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 75.

    Li D, Zhou C, Zou N, Wu Y, Zhang J, An Q, Li J, Pan C. Nanoselenium foliar application enhances biosynthesis of tea leaves in metabolic cycles and associated responsive pathways. Environ Pollut. 2021;273: 116503. https://doi.org/10.1016/j.envpol.2021.116503.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 76.

    Alimohammadi M, Panahpour E, Naseri A. Assessing the effects of urea and nano-nitrogen chelate fertilizers on sugarcane yield and dynamic of nitrate in soil. Soil Sci Plant Nutr. 2020;66(2):352–9. https://doi.org/10.1080/00380768.2020.1727298.

    CAS 
    Article 

    Google Scholar
     

  • 77.

    Rajonee AA, Zaman S, Huq SMI. Preparation, characterization and evaluation of efficacy of phosphorus and potassium incorporated nano fertilizer. Adv Nanopart. 2017;6(02):62. https://doi.org/10.4236/anp.2017.62006.

    CAS 
    Article 

    Google Scholar
     

  • 78.

    Chen D, Szostak P, Wei Z, Xiao R. Reduction of orthophosphates loss in agricultural soil by nano calcium sulfate. Sci Total Environ. 2016;539:381–7. https://doi.org/10.1016/j.scitotenv.2015.09.028.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 79.

    Ahanger MA, Qi M, Huang Z, Xu X, Begum N, Qin C, Zhang C, Ahmad N, Mustafa N, Ashraf M, Zhang L. Improving growth and photosynthetic performance of drought stressed tomato by application of nano-organic fertilizer involves up-regulation of nitrogen, antioxidant and osmolyte metabolism. Ecotoxicol Environ Saf. 2021;216: 112195. https://doi.org/10.1016/j.ecoenv.2021.112195.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 80.

    Kalia A, Kaur H. Nano-biofertilizers: Harnessing dual benefits of nano-nutrient and bio-fertilizers for enhanced nutrient use efficiency and sustainable productivity. In: Pudake R, Chauhan N, Kole C, editors. Nanoscience for sustainable agriculture. Cham: Springer; 2019. https://doi.org/10.1007/978-3-319-97852-9_3.

    Chapter 

    Google Scholar
     

  • 81.

    Yaseen R, Ahmed AIS, Omer AM, Agha MKM, Emam TM. Nano-fertilizers: Bio-fabrication, application and biosafety. Nov Res Microbiol J. 2020; 4(4), 884–900. https://doi.org/10.21608/NRMJ.2020.107540.

  • 82.

    Tang FH, Lenzen M, McBratney A, Maggi F. Risk of pesticide pollution at the global scale. Nat Geosci. 2021;14(4):206–10. https://doi.org/10.1038/s41561-021-00712-5.

    CAS 
    Article 

    Google Scholar
     

  • 83.

    Tackenberg MC, Giannoni-Guzmán MA, Sanchez-Perez E, Doll CA, Agosto-Rivera JL, Broadie K, Moore D, McMahon DG. Neonicotinoids disrupt circadian rhythms and sleep in honey bees. Sci Rep. 2020;10(1):1–10. https://doi.org/10.1038/s41598-020-72041-3.

    CAS 
    Article 

    Google Scholar
     

  • 84.

    Dewen Q. Research progress and prospect of bio-pesticides. Plant Protect. 2013;39(5):81–9. https://doi.org/10.3969/j.issn.0529-1542.2013.05.011.

    CAS 
    Article 

    Google Scholar
     

  • 85.

    Devi PV, Duraimurugan P, Chandrika K. Chapter 10-Bacillus thuringiensis-based nanopesticides for crop protection. Nano-biopesticides today and future perspectives, Academic Press. 2019, p. 249–60. https://doi.org/10.1016/B978-0-12-815829-6.00010-3.

  • 86.

    Zaki AM, Zaki AH, Farghali AA, Abdel-Rahim EF. Sodium titanate-bacillus as a new nanopesticide for cotton leaf-worm. J Pure Appl Microbiol. 2017;11(2):725–32. https://doi.org/10.22207/JPAM.11.2.11.

    CAS 
    Article 

    Google Scholar
     

  • 87.

    de Oliveira JL, Fraceto LF, Bravo A, Polanczyk RA. Encapsulation strategies for Bacillus thuringiensis: from now to the future. J Agric Food Chem. 2021;69(16):4564–77. https://doi.org/10.1021/acs.jafc.0c07118.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 88.

    Hersanti, Djaya L, Hidayat Y, Pratama LS, Joni IM. The effectiveness of suspension of Beauveria bassiana mixed with silica nanoparticles (NPs.) and carbon fiber in controlling Spodoptera litura. In AIP Conference Proceedings (Vol. 2219, No. 1, p. 080011); 2020. AIP Publishing LLC. https://doi.org/10.1063/5.0003159.

  • 89.

    Gahukar RT, Das RK. Plant-derived nanopesticides for agricultural pest control: challenges and prospects. Nanotechnol Environ Eng. 2020;5(1):1–9. https://doi.org/10.1007/s41204-020-0066-2.

    CAS 
    Article 

    Google Scholar
     

  • 90.

    Cinteza LO, Scomoroscenco C, Voicu SN, Nistor CL, Nitu SG, Trica B, Jecu M, Petcu C. Chitosan-stabilized Ag nanoparticles with superior biocompatibility and their synergistic antibacterial effect in mixtures with essential oils. Nanomaterials. 2018;8(10):826. https://doi.org/10.3390/nano8100826.

    CAS 
    Article 
    PubMed Central 

    Google Scholar
     

  • 91.

    Cui J, Sun C, Wang A, Wang Y, Zhu H, Shen Y, Li N, Zhao X, Cui B, Wang C, Gao F, Zeng Z, Cui H. Dual-functionalized pesticide nanocapsule delivery system with improved spreading behavior and enhanced bioactivity. Nanomaterials. 2020;10(2):220. https://doi.org/10.3390/nano10020220.

    CAS 
    Article 
    PubMed Central 

    Google Scholar
     

  • 92.

    Dagar A, Weksler A, Friedman H, Lurie S. Gibberellic acid (GA3) application at the end of pit ripening: effect on ripening and storage of two harvests of ‘September Snow’peach. Sci Hortic. 2012;140:125–30. https://doi.org/10.1016/j.scienta.2012.03.013.

    CAS 
    Article 

    Google Scholar
     

  • 93.

    Hafez IH, Osman AR, Sewedan EA, Berber MR. Tailoring of a potential nanoformulated form of gibberellic acid: synthesis, characterization, and field applications on vegetation and flowering. J Agric Food Chem. 2018;66(31):8237–45. https://doi.org/10.1021/acs.jafc.8b02761.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 94.

    Katiyar D, Hemantaranjan A, Singh B, Bhanu AN. A future perspective in crop protection: chitosan and its oligosaccharides. Adv Plants Agric Res. 2014;1(1):00006. https://doi.org/10.15406/apar.2014.01.00006.

    Article 

    Google Scholar
     

  • 95.

    Asgari-Targhi G, Iranbakhsh A, Ardebili ZO, Tooski AH. Synthesis and characterization of chitosan encapsulated zinc oxide (ZnO) nanocomposite and its biological assessment in pepper (Capsicum annuum) as an elicitor for in vitro tissue culture applications. Int J Biol Macromol. 2021;189:170–82. https://doi.org/10.1016/j.ijbiomac.2021.08.117.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 96.

    Ji Y, Ma S, Lv S, Wang Y, Lü S, Liu M. Nanomaterials for targeted delivery of agrochemicals by an all-in-one combination strategy and deep learning. ACS Appl Mater Interfaces. 2021;13(36):43374–86. https://doi.org/10.1021/acsami.1c11914.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 97.

    Zhang J, Khan SA, Heckel DG, Bock R. Next-generation insect-resistant plants: RNAi-mediated crop protection. Trends Biotechnol. 2017;35(9):871–82. https://doi.org/10.1016/j.tibtech.2017.04.009.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 98.

    Nunes CC, Dean RA. Host-induced gene silencing: a tool for understanding fungal host interaction and for developing novel disease control strategies. Mol Plant Pathol. 2012;13(5):519–29. https://doi.org/10.1111/j.1364-3703.2011.00766.x.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 99.

    Fukudome A, Fukuhara T. Plant dicer-like proteins: double-stranded RNA-cleaving enzymes for small RNA biogenesis. J Plant Res. 2017;130(1):33–44. https://doi.org/10.1007/s10265-016-0877-1.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 100.

    Kim VN. Small RNAs: classification, biogenesis, and function. Mol Cells. 2005;19(1):1–15.

    CAS 
    Article 

    Google Scholar
     

  • 101.

    Haussecker D, Huang Y, Lau A, Parameswaran P, Fire AZ, Kay MA. Human tRNA-derived small RNAs in the global regulation of RNA silencing. RNA. 2010;16(4):673–95. https://doi.org/10.1261/rna.2000810.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 102.

    Xie Z, Johansen LK, Gustafson AM, Kasschau KD, Lellis AD, Zilberman D, Jacobsen SE, Carrington JC. Genetic and functional diversification of small RNA pathways in plants. PLoS Biol. 2004;2(5): e104. https://doi.org/10.1371/journal.pbio.0020104.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 103.

    Yan S, Ren BY, Shen J. Nanoparticle-mediated double-stranded RNA delivery system: A promising approach for sustainable pest management. Insect Sci. 2021;28(1):21–34. https://doi.org/10.1111/1744-7917.12822.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 104.

    Mitter N, Worrall EA, Robinson KE, Li P, Jain RG, Taochy C, Fletcher SJ, Carroll BJ, Lu GM, Xu ZP. Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses. Nat Plants. 2017;3(2):1–10. https://doi.org/10.1038/nplants.2016.207.

    CAS 
    Article 

    Google Scholar
     

  • 105.

    Kwak S, Lew TTS, Sweeney CJ, Koman VB, Wong MH, Bohmert-Tatarev K, Snell KD, Seo JS, Chua N, Strano MS. Chloroplast-selective gene delivery and expression in planta using chitosan-complexed single-walled carbon nanotube carriers. Nat Nanotechnol. 2019;14(5):447–55. https://doi.org/10.1038/s41565-019-0375-4.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 106.

    Demirer GS, Zhang H, Matos JL, Goh NS, Cunningham FJ, Sung Y, Chang R, Aditham AJ, Chio L, Cho M, Staskawicz B, Landry MP. High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants. Nat Nanotechnol. 2019;14(5):456–64. https://doi.org/10.1038/s41565-019-0382-5.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 107.

    Gaspar T, Kevers C, Penel C, Greppin H, Reid DM, Thorpe TA. Plant hormones and plant growth regulators in plant tissue culture. In vitro Cell Dev-Plant. 1996;32(4):272–89. https://doi.org/10.1007/BF02822700.

    CAS 
    Article 

    Google Scholar
     

  • 108.

    Chen J, Cao S, Xi C, Chen Y, Li X, Zhang L, Wang G, Chen Y, Chen Z. A novel magnetic β-cyclodextrin modified graphene oxide adsorbent with high recognition capability for 5 plant growth regulators. Food Chem. 2018;239:911–9. https://doi.org/10.1016/j.foodchem.2017.07.013.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 109.

    Li N, Wu D, Li X, Zhou X, Fan G, Li G, Wu Y. Effective enrichment and detection of plant growth regulators in fruits and vegetables using a novel magnetic covalent organic framework material as the adsorbents. Food Chem. 2020;306: 125455. https://doi.org/10.1016/j.foodchem.2019.125455.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 110.

    Santo Pereira AE, Silva PM, Oliveira JL, Oliveira HC, Fraceto LF. Chitosan nanoparticles as carrier systems for the plant growth hormone gibberellic acid. Colloid Surface B. 2017;150:141–52. https://doi.org/10.1016/j.colsurfb.2016.11.027.

    CAS 
    Article 

    Google Scholar
     

  • 111.

    Khodakovskaya MV, Kim BS, Kim JN, Alimohammadi M, Dervishi E, Mustafa T, Cernigla CE. Carbon nanotubes as plant growth regulators: effects on tomato growth, reproductive system, and soil microbial community. Small. 2013;9(1):115–23. https://doi.org/10.1002/smll.201201225.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 112.

    Chakravarty D, Erande MB, Late DJ. Graphene quantum dots as enhanced plant growth regulators: effects on coriander and garlic plants. J Sci Food Agr. 2015;95(13):2772–8. https://doi.org/10.1002/jsfa.7106.

    CAS 
    Article 

    Google Scholar
     

  • 113.

    Gregg PC, Del Socorro AP, Landolt PJ. Advances in attract-and-kill for agricultural pests: beyond pheromones. Annu Rev Entomol. 2018;63:453–70. https://doi.org/10.1146/annurev-ento-031616-035040.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 114.

    Larson NR, Strickland J, Shields VD, Zhang A. Controlled-release dispenser and dry trap developments for Drosophila suzukii detection. Front Ecol Evol. 2020;8:45. https://doi.org/10.3389/fevo.2020.00045.

    Article 

    Google Scholar
     

  • 115.

    Seo SM, Lee JM, Lee HY, An J, Choi SJ, Lim WT. Synthesis of nanoporous materials to dispense pheromone for trapping agricultural pests. J Porous Mat. 2016;23(2):557–62. https://doi.org/10.1007/s10934-015-0109-4.

    CAS 
    Article 

    Google Scholar
     

  • 116.

    Correia PRC, Santana JS, Ramos IG, Sant Ana AEG, Goulart HF, Druzian JI. Development of membranes composed of poly (butylene adipate-co-terephthalate) and activated charcoal for use in a controlled release system of pheromone. J Polym Environ. 2019;27(8):1781–9. https://doi.org/10.1007/s10924-019-01471-6.

    CAS 
    Article 

    Google Scholar
     

  • 117.

    Bhagat D, Samanta SK, Bhattacharya S. Efficient management of fruit pests by pheromone nanogels. Sci Rep. 2013;3(1):1–8. https://doi.org/10.1038/srep01294.

    CAS 
    Article 

    Google Scholar
     

  • 118.

    Rai M, Ribeiro C, Mattoso L, Duran N. Nanotechnologies in food and agriculture, Vol. 33, Cham/Heidelberg/New York/Dordrecht/London: Springer; 2015. https://doi.org/10.1007/978-3-319-14024-7.

  • 119.

    Juárez-Maldonado A, Tortella G, Rubilar O, Fincheira P, Benavides-Mendoza A. Biostimulation and toxicity: the magnitude of the impact of nanomaterials in microorganisms and plants. J Adv Res. 2021;31:113–26. https://doi.org/10.1016/j.jare.2020.12.011.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 120.

    Yang X, He Q, Guo F, Sun X, Zhang J, Chen Y. Impacts of carbon-based nanomaterials on nutrient removal in constructed wetlands: Microbial community structure, enzyme activities, and metabolism process. J Hazard Mater. 2021;401: 123270. https://doi.org/10.1016/j.jhazmat.2020.123270.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 121.

    Zhang P, Guo Z, Ullah S, Melagraki G, Afantitis A, Lynch I. Nanotechnology and artificial intelligence to enable sustainable and precision agriculture. Nat Plants. 2021;7(7):864–76. https://doi.org/10.1038/s41477-021-00946-6.

    Article 
    PubMed 

    Google Scholar
     

  • 122.

    Kah M, Kookana RS, Gogos A, Bucheli TD. A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nature Nanotech. 2018;13(8):677–84. https://doi.org/10.1038/s41565-018-0131-1.

    CAS 
    Article 

    Google Scholar
     

  • 123.

    StatNano. Home | Nanotechnology Products Database; 2021. |https://product.statnano.com/industry/agriculture. Accessed 25 Nov 2021.

  • 124.

    Younis SA, Kim KH, Shaheen SM, Antoniadis V, Tsang YF, Rinklebe J, Deep A, Brown RJ. Advancements of nanotechnologies in crop promotion and soil fertility: benefits, life cycle assessment, and legislation policies. Renew Sust Energ Rev. 2021;152: 111686. https://doi.org/10.1016/j.rser.2021.111686.

    CAS 
    Article 

    Google Scholar
     

  • 125.

    Kah M, Tufenkji N, White JC. Nano-enabled strategies to enhance crop nutrition and protection. Nat Nanotechnol. 2019;14(6):532–40. https://doi.org/10.1038/s41565-019-0439-5.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 126.

    Beumer K. On the elusive nature of the public. Nat Nanotechnol. 2019;14(6):510–2. https://doi.org/10.1038/s41565-019-0468-0.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)