• 1.

    Alatab S, Sepanlou SG, Ikuta K, Vahedi H, Bisignano C, Safiri S, et al. The global, regional, and national burden of inflammatory bowel disease in 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol Hepatol. 2020;5(1):17–30.


    Google Scholar
     

  • 2.

    Byrne G, Rosenfeld G, Leung Y, Qian H, Raudzus J, Nunez C, et al. Prevalence of anxiety and depression in patients with inflammatory bowel disease. Can J Gastroenterol Hepatol. 2017;2017:6496727.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 3.

    Nigro G, Angelini G, Grosso SB, Caula G, Sategna-Guidetti C. Psychiatric predictors of noncompliance in inflammatory bowel disease: psychiatry and compliance. J Clin Gastroenterol. 2001;32(1):1.


    Google Scholar
     

  • 4.

    Katon WJ. Epidemiology and treatment of depression in patients with chronic medical illness. Dialogues Clin Neurosci. 2011;13(1):7–23.

    PubMed 

    Google Scholar
     

  • 5.

    Gracie DJ, Hamlin PJ, Ford AC. The influence of the brain–gut axis in inflammatory bowel disease and possible implications for treatment. Lancet Gastroenterol Hepatol. 2019;4(8):632–42.

    PubMed 

    Google Scholar
     

  • 6.

    Mikkelsen RL, Middelboe T, Pisinger C, Stage KB. Anxiety and depression in patients with chronic obstructive pulmonary disease (COPD). A review. Nordic J Psychiatry. 2004;58(1):65–70.


    Google Scholar
     

  • 7.

    Margaretten M, Julian L, Katz P, Yelin E. Depression in patients with rheumatoid arthritis: description, causes and mechanisms. Int J Clin Rheumtol. 2011;6(6):617–23.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 8.

    Roy T, Lloyd CE. Epidemiology of depression and diabetes: a systematic review. J Affect Disord. 2012;142:S8–21.

    PubMed 

    Google Scholar
     

  • 9.

    Hendrickson BA, Gokhale R, Cho JH. Clinical aspects and pathophysiology of inflammatory bowel disease. Clin Microbiol Rev. 2002;15(1):79.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 10.

    Zhang YZ, Li YY. Inflammatory bowel disease: pathogenesis. World J Gastroenterol. 2014;20(1):91–9.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 11.

    Stavely R, Abalo R, Nurgali K. Targeting enteric neurons and plexitis for the management of inflammatory bowel disease. Curr Drug Targets. 2020;21(14):1428–39.

    CAS 
    PubMed 

    Google Scholar
     

  • 12.

    Rao M, Gershon MD. The bowel and beyond: the enteric nervous system in neurological disorders. Nat Rev Gastroenterol Hepatol. 2016;13(9):517–28.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 13.

    Bernstein CN, Hitchon CA, Walld R, Bolton JM, Sareen J, Walker JR, et al. Increased burden of psychiatric disorders in inflammatory bowel disease. Inflamm Bowel Dis. 2019;25(2):360–8.

    PubMed 

    Google Scholar
     

  • 14.

    Mikocka-Walus A, Knowles SR, Keefer L, Graff L. Controversies revisited: a systematic review of the comorbidity of depression and anxiety with inflammatory bowel diseases. Inflamm Bowel Dis. 2016;22(3):752–62.

    PubMed 

    Google Scholar
     

  • 15.

    Walker JR, Ediger JP, Graff LA, Greenfeld JM, Clara I, Lix L, et al. The Manitoba IBD cohort study: a population-based study of the prevalence of lifetime and 12-month anxiety and mood disorders. Am J Gastroenterol. 2008;103(8):1989–97.

    PubMed 

    Google Scholar
     

  • 16.

    Troubat R, Barone P, Leman S, Desmidt T, Cressant A, Atanasova B, et al. Neuroinflammation and depression: a review. Eur J Neurosci. 2021;53(1):151–71.

    PubMed 

    Google Scholar
     

  • 17.

    Holsboer F. The corticosteroid receptor hypothesis of depression. Neuropsychopharmacology. 2000;23(5):477–501.

    CAS 
    PubMed 

    Google Scholar
     

  • 18.

    Sublette ME, Postolache TT. Neuroinflammation and depression: the role of indoleamine 2,3-dioxygenase (IDO) as a molecular pathway. Psychosom Med. 2012;74(7):668–72.

    PubMed 

    Google Scholar
     

  • 19.

    Eisch AJ, Petrik D. Depression and hippocampal neurogenesis: a road to remission? Science. 2012;338(6103):72–5.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Dowlati Y, Herrmann N, Swardfager W, Liu H, Sham L, Reim EK, et al. A meta-analysis of cytokines in major depression. Biol Psychiatry. 2010;67(5):446–57.

    CAS 
    PubMed 

    Google Scholar
     

  • 21.

    Keefe B. Interferon-induced depression in hepatitis C: an update. Curr Psychiatry Rep. 2007;9(3):255–61.

    PubMed 

    Google Scholar
     

  • 22.

    Dantzer R, Kelley KW. Twenty years of research on cytokine-induced sickness behavior. Brain Behav Immun. 2007;21(2):153–60.

    CAS 
    PubMed 

    Google Scholar
     

  • 23.

    Raison C, Capuron L, Miller A. Cytokines sing the blues: inflammation and the pathogenesis of depression. Trends Immunol. 2006;27(1):24–31.

    CAS 
    PubMed 

    Google Scholar
     

  • 24.

    Zunszain P, Hepgul N, Pariante C. Inflammation and Depression. Behav Neurobiol Depression Treatment. 2012;14:135–51.


    Google Scholar
     

  • 25.

    Brites D, Fernandes A. Neuroinflammation and depression: microglia activation, extracellular microvesicles and microRNA dysregulation. Front Cell Neurosci. 2015;9:476.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 26.

    Zhang J, He H, Qiao Y, Zhou T, He H, Yi S, et al. Priming of microglia with IFN-γ impairs adult hippocampal neurogenesis and leads to depression-like behaviors and cognitive defects. Glia. 2020;68(12):2674–92.

    PubMed 

    Google Scholar
     

  • 27.

    Kwidzinski E, Bechmann I. IDO expression in the brain: a double-edged sword. J Mol Med. 2007;85(12):1351–9.

    PubMed 

    Google Scholar
     

  • 28.

    McGuckin MA, Eri R, Simms LA, Florin TH, Radford-Smith G. Intestinal barrier dysfunction in inflammatory bowel diseases. Inflamm Bowel Dis. 2009;15(1):100–13.

    PubMed 

    Google Scholar
     

  • 29.

    Coskun M. Intestinal epithelium in inflammatory bowel disease. Front Med. 2014;1:24.


    Google Scholar
     

  • 30.

    Jarret A, Jackson R, Duizer C, Healy ME, Zhao J, Rone JM, et al. Enteric nervous system-derived IL-18 orchestrates mucosal barrier immunity. Cell. 2020;180(1):50-63.e12.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 31.

    Birchenough GMH, Johansson ME, Gustafsson JK, Bergström JH, Hansson GC. New developments in goblet cell mucus secretion and function. Mucosal Immunol. 2015;8(4):712–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 32.

    Dorofeyev AE, Vasilenko IV, Rassokhina OA, Kondratiuk RB. Mucosal barrier in ulcerative colitis and Crohn’s disease. Gastroenterol Res Pract. 2013;2013:431231.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Nakamura Y, Hamajima Y, Komori M, Yokota M, Suzuki M, Lin J. The role of atoh1 in mucous cell metaplasia. Int J Otolaryngol. 2012;212:438609.


    Google Scholar
     

  • 34.

    Yang Q, Bermingham NA, Finegold MJ, Zoghbi HY. Requirement of Math1 for secretory cell lineage commitment in the mouse intestine. Science. 2001;294(5549):2155–8.

    CAS 
    PubMed 

    Google Scholar
     

  • 35.

    Itoh H, Beck PL, Inoue N, Xavier R, Podolsky DK. A paradoxical reduction in susceptibility to colonic injury upon targeted transgenic ablation of goblet cells. J Clin Investig. 1999;104(11):1539–47.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 36.

    Heazlewood CK, Cook MC, Eri R, Price GR, Tauro SB, Taupin D, et al. Aberrant mucin assembly in mice causes endoplasmic reticulum stress and spontaneous inflammation resembling ulcerative colitis. PLOS Med. 2008;5(3):e54.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 37.

    Van der Sluis M, De Koning BA, De Bruijn AC, Velcich A, Meijerink JP, Van Goudoever JB, et al. Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology. 2006;131(1):117–29.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 38.

    Lee B, Moon KM, Kim CY. Tight junction in the intestinal epithelium: its association with diseases and regulation by phytochemicals. J Immunol Res. 2018;2018:2645465.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 39.

    Landy J, Ronde E, English N, Clark SK, Hart AL, Knight SC, et al. Tight junctions in inflammatory bowel diseases and inflammatory bowel disease associated colorectal cancer. World J Gastroenterol. 2016;22(11):3117–26.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 40.

    Garcia-Hernandez V, Quiros M, Nusrat A. Intestinal epithelial claudins: expression and regulation in homeostasis and inflammation. Ann N Y Acad Sci. 2017;1397(1):66–79.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 41.

    Oshima T, Miwa H, Joh T. Changes in the expression of claudins in active ulcerative colitis. J Gastroenterol Hepatol. 2008;23(s2):S146–50.

    CAS 
    PubMed 

    Google Scholar
     

  • 42.

    Prasad S, Mingrino R, Kaukinen K, Hayes KL, Powell RM, MacDonald TT, et al. Inflammatory processes have differential effects on claudins 2, 3 and 4 in colonic epithelial cells. Lab Invest. 2005;85(9):1139–62.

    CAS 
    PubMed 

    Google Scholar
     

  • 43.

    Weber CR, Nalle SC, Tretiakova M, Rubin DT, Turner JR. Claudin-1 and claudin-2 expression is elevated in inflammatory bowel disease and may contribute to early neoplastic transformation. Lab Invest. 2008;88(10):1110–20.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 44.

    Zeissig S, Bürgel N, Günzel D, Richter J, Mankertz J, Wahnschaffe U, et al. Changes in expression and distribution of claudin 2, 5 and 8 lead to discontinuous tight junctions and barrier dysfunction in active Crohn’s disease. Gut. 2007;56(1):61–72.

    CAS 
    PubMed 

    Google Scholar
     

  • 45.

    Poritz LS, Harris LR 3rd, Kelly AA, Koltun WA. Increase in the tight junction protein claudin-1 in intestinal inflammation. Dig Dis Sci. 2011;56(10):2802–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 46.

    Guo G, Shi F, Zhu J, Shao Y, Gong W, Zhou G, et al. Piperine, a functional food alkaloid, exhibits inhibitory potential against TNBS-induced colitis via the inhibition of IκB-α/NF-κB and induces tight junction protein (claudin-1, occludin, and ZO-1) signaling pathway in experimental mice. Hum Exp Toxicol. 2019;39(4):477–91.

    PubMed 

    Google Scholar
     

  • 47.

    Li Q, Zhang Q, Zhang M, Wang C, Zhu Z, Li N, et al. Effect of n-3 polyunsaturated fatty acids on membrane microdomain localization of tight junction proteins in experimental colitis. FEBS J. 2008;275(3):411–20.

    CAS 
    PubMed 

    Google Scholar
     

  • 48.

    Yuan B, Zhou S, Lu Y, Liu J, Jin X, Wan H, et al. Changes in the expression and distribution of claudins, increased epithelial apoptosis, and a mannan-binding lectin-associated immune response lead to barrier dysfunction in dextran sodium sulfate-induced rat colitis. Gut Liver. 2015;9(6):734–40.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 49.

    Lu Y, Lin H, Zhang J, Wei J, Sun J, Han L. Sijunzi Decoction attenuates 2, 4, 6-trinitrobenzene sulfonic acid (TNBS)-induced colitis in rats and ameliorates TNBS-induced claudin-2 damage via NF-κB pathway in Caco2 cells. BMC Complement Altern Med. 2017;17(1):35.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 50.

    Mao T, Li J, Liu L, Zhao W, Liu Y, Gao K, et al. Qingchang Wenzhong decoction attenuates DSS-induced colitis in rats by reducing inflammation and improving intestinal barrier function via upregulating the MSP/RON signalling pathway. Evid-Based Complem Altern Med. 2017;2017:4846876.


    Google Scholar
     

  • 51.

    Cai L, Li X, Geng C, Lei X, Wang C. Molecular mechanisms of somatostatin-mediated intestinal epithelial barrier function restoration by upregulating claudin-4 in mice with DSS-induced colitis. Am J Physiol Cell Physiol. 2018;315(4):C527–36.

    CAS 
    PubMed 

    Google Scholar
     

  • 52.

    Kucharzik T, Walsh SV, Chen J, Parkos CA, Nusrat A. Neutrophil transmigration in inflammatory bowel disease is associated with differential expression of epithelial intercellular junction proteins. Am J Pathol. 2001;159(6):2001–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 53.

    Wu D, Wu K, Zhu Q, Xiao W, Shan Q, Yan Z, et al. Formononetin administration ameliorates dextran sulfate sodium-induced acute colitis by inhibiting NLRP3 inflammasome signaling pathway. Mediators Inflamm. 2018;2018:3048532.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 54.

    Scharl M, Paul G, Barrett KE, McCole DF. AMP-activated protein kinase mediates the interferon-gamma-induced decrease in intestinal epithelial barrier function. J Biol Chem. 2009;284(41):27952–63.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 55.

    Das P, Goswami P, Das TK, Nag T, Sreenivas V, Ahuja V, et al. Comparative tight junction protein expressions in colonic Crohn’s disease, ulcerative colitis, and tuberculosis: a new perspective. Virchows Arch. 2012;460(3):261–70.

    CAS 
    PubMed 

    Google Scholar
     

  • 56.

    Jin Y, Blikslager AT. The regulation of intestinal mucosal barrier by myosin light chain kinase/Rho kinases. Int J Mol Sci. 2020;21:10.


    Google Scholar
     

  • 57.

    Blair SA, Kane SV, Clayburgh DR, Turner JR. Epithelial myosin light chain kinase expression and activity are upregulated in inflammatory bowel disease. Lab Invest. 2006;86(2):191–201.

    CAS 
    PubMed 

    Google Scholar
     

  • 58.

    Xu B, Li Y-L, Xu M, Yu C-C, Lian M-Q, Tang Z-Y, et al. Geniposide ameliorates TNBS-induced experimental colitis in rats via reducing inflammatory cytokine release and restoring impaired intestinal barrier function. Acta Pharmacol Sin. 2017;38(5):688–98.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 59.

    Nighot P, Al-Sadi R, Rawat M, Guo S, Watterson DM, Ma T. Matrix metalloproteinase 9-induced increase in intestinal epithelial tight junction permeability contributes to the severity of experimental DSS colitis. Am J Physiol Gastrointest Liver Physiol. 2015;309(12):988–97.


    Google Scholar
     

  • 60.

    Du J, Chen Y, Shi Y, Liu T, Cao Y, Tang Y, et al. 1,25-Dihydroxyvitamin D protects intestinal epithelial barrier by regulating the myosin light chain kinase signaling pathway. Inflamm Bowel Dis. 2015;21(11):2495–506.

    PubMed 

    Google Scholar
     

  • 61.

    Mankertz J, Tavalali S, Schmitz H, Mankertz A, Riecken EO, Fromm M, et al. Expression from the human occludin promoter is affected by tumor necrosis factor alpha and interferon gamma. J Cell Sci. 2000;113(Pt 11):2085–90.

    CAS 
    PubMed 

    Google Scholar
     

  • 62.

    Cui W, Li LX, Sun CM, Wen Y, Zhou Y, Dong YL, et al. Tumor necrosis factor alpha increases epithelial barrier permeability by disrupting tight junctions in Caco-2 cells. Braz J Med Biol Res. 2010;43:330–7.

    CAS 
    PubMed 

    Google Scholar
     

  • 63.

    Vetrano S, Rescigno M, Cera MR, Correale C, Rumio C, Doni A, et al. Unique role of junctional adhesion molecule-a in maintaining mucosal homeostasis in inflammatory bowel disease. Gastroenterology. 2008;135(1):173–84.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 64.

    Mandell KJ, Babbin BA, Nusrat A, Parkos CA. Junctional adhesion molecule 1 regulates epithelial cell morphology through effects on beta1 integrins and Rap1 activity. J Biol Chem. 2005;280(12):11665–74.

    CAS 
    PubMed 

    Google Scholar
     

  • 65.

    Ma TY, Iwamoto GK, Hoa NT, Akotia V, Pedram A, Boivin MA, et al. TNF-α-induced increase in intestinal epithelial tight junction permeability requires NF-κB activation. Am J Physiol Gastrointest Liver Physiol. 2004;286(3):367–76.


    Google Scholar
     

  • 66.

    Segain J-P, Raingeard de la Blétière D, Sauzeau V, Bourreille A, Hilaret G, Cario-Toumaniantz C, et al. Rho kinase blockade prevents inflammation via nuclear factor kappa B inhibition: evidence in Crohn’s disease and experimental colitis. Gastroenterology. 2003;124(5):1180–7.

    CAS 
    PubMed 

    Google Scholar
     

  • 67.

    Graham WV, Wang F, Clayburgh DR, Cheng JX, Yoon B, Wang Y, et al. Tumor necrosis factor-induced long myosin light chain kinase transcription is regulated by differentiation-dependent signaling events. J Biol Chem. 2006;281(36):26205–15.

    CAS 
    PubMed 

    Google Scholar
     

  • 68.

    Quiros M, Nusrat A. RhoGTPases, actomyosin signaling and regulation of the epithelial apical junctional complex. Semin Cell Dev Biol. 2014;36:194–203.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 69.

    Bruewer M, Samarin S, Nusrat A. Inflammatory bowel disease and the apical junctional complex. Ann N Y Acad Sci. 2006;1072(1):242–52.

    CAS 
    PubMed 

    Google Scholar
     

  • 70.

    Arnold TR, Stephenson RE, Miller AL. Rho GTPases and actomyosin: partners in regulating epithelial cell–cell junction structure and function. Exp Cell Res. 2017;358(1):20–30.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 71.

    Al-Sadi R, Youssef M, Rawat M, Guo S, Dokladny K, Haque M, et al. MMP-9-induced increase in intestinal epithelial tight permeability is mediated by p38 kinase signaling pathway activation of MLCK gene. Am J Physiol Gastrointest Liver Physiol. 2018;316(2):278–90.


    Google Scholar
     

  • 72.

    Ben David D, Reznick AZ, Srouji S, Livne E. Exposure to pro-inflammatory cytokines upregulates MMP-9 synthesis by mesenchymal stem cells-derived osteoprogenitors. Histochem Cell Biol. 2008;129(5):589–97.

    CAS 
    PubMed 

    Google Scholar
     

  • 73.

    O’Sullivan S, Gilmer JF, Medina C. Matrix metalloproteinases in inflammatory bowel disease: an update. Mediat Inflamm. 2015;215:964131.


    Google Scholar
     

  • 74.

    Costa M, Brookes SJH, Hennig GW. Anatomy and physiology of the enteric nervous system. Gut. 2000;47(suppl 4):15.


    Google Scholar
     

  • 75.

    Ochoa-Cortes F, Turco F, Linan-Rico A, Soghomonyan S, Whitaker E, Wehner S, et al. Enteric glial cells: a new frontier in neurogastroenterology and clinical target for inflammatory bowel diseases. Inflamm Bowel Dis. 2016;22(2):433–49.

    PubMed 

    Google Scholar
     

  • 76.

    Bernardazzi C, Pêgo B, de Souza HSP. Neuroimmunomodulation in the gut: focus on inflammatory bowel disease. Mediators Inflamm. 2016;2016:1363818.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 77.

    Chow AK, Gulbransen BD. Potential roles of enteric glia in bridging neuroimmune communication in the gut. Am J Physiol Gastrointest Liver Physiol. 2016;312(2):145–52.


    Google Scholar
     

  • 78.

    Zoppi S, Madrigal JLM, Pérez-Nievas BG, Marín-Jiménez I, Caso JR, Alou L, et al. Endogenous cannabinoid system regulates intestinal barrier function in vivo through cannabinoid type 1 receptor activation. Am J Physiol Gastrointest Liver Physiol. 2011;302(5):565–71.


    Google Scholar
     

  • 79.

    Neunlist M, Toumi F, Oreschkova T, Denis M, Leborgne J, Laboisse CL, et al. Human ENS regulates the intestinal epithelial barrier permeability and a tight junction-associated protein ZO-1 via VIPergic pathways. Am J Physiol Gastrointest Liver Physiol. 2003;285(5):G1028–36.

    CAS 
    PubMed 

    Google Scholar
     

  • 80.

    Chandrasekharan B, Jeppsson S, Pienkowski S, Belsham DD, Sitaraman SV, Merlin D, et al. Tumor necrosis factor-neuropeptide Y cross talk regulates inflammation, epithelial barrier functions, and colonic motility. Inflamm Bowel Dis. 2013;19(12):2535–46.

    PubMed 

    Google Scholar
     

  • 81.

    Cheadle GA, Costantini TW, Bansal V, Eliceiri BP, Coimbra R. Cholinergic signaling in the gut: a novel mechanism of barrier protection through activation of enteric glia cells. Surg Infect (Larchmt). 2014;15(4):387–93.


    Google Scholar
     

  • 82.

    Lesko S, Wessler I, Gäbel G, Petto C, Pfannkuche H. Cholinergic modulation of epithelial integrity in the proximal colon of pigs. Cells Tissues Organs. 2013;197(5):411–20.

    CAS 
    PubMed 

    Google Scholar
     

  • 83.

    Hons IM, Burda JE, Grider JR, Mawe GM, Sharkey KA. Alterations to enteric neural signaling underlie secretory abnormalities of the ileum in experimental colitis in the guinea pig. Am J Physiol Gastrointest Liver Physiol. 2009;296(4):G717–26.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 84.

    Jayawardena D, Anbazhagan AN, Guzman G, Dudeja PK, Onyuksel H. Vasoactive intestinal peptide nanomedicine for the management of inflammatory bowel disease. Mol Pharm. 2017;14(11):3698–708.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 85.

    Munro S, Thomas KL, Abu-Shaar M. Molecular characterization of a peripheral receptor for cannabinoids. Nature. 1993;365(6441):61–5.

    CAS 
    PubMed 

    Google Scholar
     

  • 86.

    Coutts AA, Irving AJ, Mackie K, Pertwee RG, Anavi-Goffer S. Localisation of cannabinoid CB(1) receptor immunoreactivity in the guinea pig and rat myenteric plexus. J Comp Neurol. 2002;448(4):410–22.

    CAS 
    PubMed 

    Google Scholar
     

  • 87.

    Banan A, Farhadi A, Fields JZ, Zhang LJ, Shaikh M, Keshavarzian A. The delta-isoform of protein kinase C causes inducible nitric-oxide synthase and nitric oxide up-regulation: key mechanism for oxidant-induced carbonylation, nitration, and disassembly of the microtubule cytoskeleton and hyperpermeability of barrier of intestinal epithelia. J Pharmacol Exp Ther. 2003;305(2):482–94.

    CAS 
    PubMed 

    Google Scholar
     

  • 88.

    Han X, Fink MP, Yang R, Delude RL. Increased iNOS activity is essential for intestinal epithelial tight junction dysfunction in endotoxemic mice. Shock. 2004;21(3):261–70.

    CAS 
    PubMed 

    Google Scholar
     

  • 89.

    Savidge TC, Newman P, Pothoulakis C, Ruhl A, Neunlist M, Bourreille A, et al. Enteric glia regulate intestinal barrier function and inflammation via release of S-nitrosoglutathione. Gastroenterology. 2007;132(4):1344–58.

    CAS 
    PubMed 

    Google Scholar
     

  • 90.

    Meir M, Flemming S, Burkard N, Bergauer L, Metzger M, Germer C-T, et al. Glial cell line-derived neurotrophic factor promotes barrier maturation and wound healing in intestinal epithelial cells in vitro. Am J Physiol Gastrointest Liver Physiol. 2015;309(8):613–24.


    Google Scholar
     

  • 91.

    Cheadle GA, Costantini TW, Lopez N, Bansal V, Eliceiri BP, Coimbra R. Enteric glia cells attenuate cytomix-induced intestinal epithelial barrier breakdown. PLoS ONE. 2013;8(7):e69042.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 92.

    Li Z, Zhang X, Zhou H, Liu W, Li J. Exogenous S-nitrosoglutathione attenuates inflammatory response and intestinal epithelial barrier injury in endotoxemic rats. J Trauma Acute Care Surg. 2016;80(6):977–84.

    CAS 
    PubMed 

    Google Scholar
     

  • 93.

    von Boyen GB, Steinkamp M, Geerling I, Reinshagen M, Schäfer KH, Adler G, et al. Proinflammatory cytokines induce neurotrophic factor expression in enteric glia: a key to the regulation of epithelial apoptosis in Crohn’s disease. Inflamm Bowel Dis. 2006;12(5):346–54.


    Google Scholar
     

  • 94.

    Xiao W, Wang W, Chen W, Sun L, Li X, Zhang C, et al. GDNF is involved in the barrier-inducing effect of enteric glial cells on intestinal epithelial cells under acute ischemia reperfusion stimulation. Mol Neurobiol. 2014;50(2):274–89.

    CAS 
    PubMed 

    Google Scholar
     

  • 95.

    Zhang DK, He FQ, Li TK, Pang XH, Cui DJ, Xie Q, et al. Glial-derived neurotrophic factor regulates intestinal epithelial barrier function and inflammation and is therapeutic for murine colitis. J Pathol. 2010;222(2):213–22.

    CAS 
    PubMed 

    Google Scholar
     

  • 96.

    Steinkamp M, Geerling I, Seufferlein T, von Boyen G, Egger B, Grossmann J, et al. Glial-derived neurotrophic factor regulates apoptosis in colonic epithelial cells. Gastroenterology. 2003;124(7):1748–57.

    CAS 
    PubMed 

    Google Scholar
     

  • 97.

    von Boyen GBT, Schulte N, Pflüger C, Spaniol U, Hartmann C, Steinkamp M. Distribution of enteric glia and GDNF during gut inflammation. BMC Gastroenterol. 2011;11(1):3.


    Google Scholar
     

  • 98.

    Ramos GP, Papadakis KA. Mechanisms of disease: inflammatory bowel diseases. Mayo Clin Proc. 2019;94(1):155–65.

    CAS 
    PubMed 

    Google Scholar
     

  • 99.

    Lee SH, Kwon J, Cho M-L. Immunological pathogenesis of inflammatory bowel disease. Intest Res. 2018;16(1):26–42.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 100.

    Choy MC, Visvanathan K, De Cruz P. An overview of the innate and adaptive immune system in inflammatory bowel disease. Inflamm Bowel Dis. 2017;23(1):2–13.

    PubMed 

    Google Scholar
     

  • 101.

    Guan Q. A comprehensive review and update on the pathogenesis of inflammatory bowel disease. J Immunol Res. 2019;2019:7247238.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 102.

    Cibor D, Domagala-Rodacka R, Rodacki T, Jurczyszyn A, Mach T, Owczarek D. Endothelial dysfunction in inflammatory bowel diseases: pathogenesis, assessment and implications. World J Gastroenterol. 2016;22(3):1067–77.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 103.

    Cromer WE, Mathis JM, Granger DN, Chaitanya GV, Alexander JS. Role of the endothelium in inflammatory bowel diseases. World J Gastroenterol. 2011;17(5):578–93.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 104.

    Vijay-Kumar M, Aitken JD, Gewirtz AT. Toll like receptor-5: protecting the gut from enteric microbes. Semin Immunopathol. 2008;30(1):11–21.

    CAS 
    PubMed 

    Google Scholar
     

  • 105.

    Lodes MJ, Cong Y, Elson CO, Mohamath R, Landers CJ, Targan SR, et al. Bacterial flagellin is a dominant antigen in Crohn disease. J Clin Investig. 2004;113(9):1296–306.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 106.

    Del Zotto B, Mumolo G, Pronio AM, Montesani C, Tersigni R, Boirivant M. TGF-beta1 production in inflammatory bowel disease: differing production patterns in Crohn’s disease and ulcerative colitis. Clin Exp Immunol. 2003;134(1):120–6.

    PubMed 

    Google Scholar
     

  • 107.

    Babyatsky MW, Rossiter G, Podolsky DK. Expression of transforming growth factors alpha and beta in colonic mucosa in inflammatory bowel disease. Gastroenterology. 1996;110(4):975–84.

    CAS 
    PubMed 

    Google Scholar
     

  • 108.

    Yun S-M, Kim S-H, Kim E-H. The molecular mechanism of transforming growth factor-β signaling for intestinal fibrosis: a mini-review. Front Pharmacol. 2019;10:162.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 109.

    Antonov AS, Antonova GN, Fujii M, ten Dijke P, Handa V, Catravas JD, et al. Regulation of endothelial barrier function by TGF-β type I receptor ALK5: potential role of contractile mechanisms and heat shock protein 90. J Cell Physiol. 2012;227(2):759–71.

    CAS 
    PubMed 

    Google Scholar
     

  • 110.

    van Meeteren LA, ten Dijke P. Regulation of endothelial cell plasticity by TGF-β. Cell Tissue Res. 2012;347(1):177–86.

    PubMed 

    Google Scholar
     

  • 111.

    Correa I, Veny M, Esteller M, Piqué JM, Yagüe J, Panés J, et al. Defective IL-10 production in severe phenotypes of Crohn’s disease. J Leukoc Biol. 2009;85(5):896–903.

    CAS 
    PubMed 

    Google Scholar
     

  • 112.

    Oshima T, Laroux FS, Coe LL, Morise Z, Kawachi S, Bauer P, et al. Interferon-γ and Interleukin-10 reciprocally regulate endothelial junction integrity and barrier function. Microvasc Res. 2001;61(1):130–43.

    CAS 
    PubMed 

    Google Scholar
     

  • 113.

    Curciarello R, Sobande T, Jones S, Giuffrida P, Sabatino AD, Docena G, et al. Human neutrophil elastase proteolytic activity in ulcerative colitis favors the loss of function of therapeutic monoclonal antibodies. J Inflamm Res. 2020;13:1–7.


    Google Scholar
     

  • 114.

    Tatsuki M, Hatori R, Nakazawa T, Ishige T, Hara T, Kagimoto S, et al. Serological cytokine signature in paediatric patients with inflammatory bowel disease impacts diagnosis. Sci Rep. 2020;10(1):14638.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 115.

    Korolkova OY, Myers JN, Pellom ST, Wang L, M’Koma AE. Characterization of serum cytokine profile in predominantly colonic inflammatory bowel disease to delineate ulcerative and Crohn’s colitides. Clin Med Insights. 2015;8:612.


    Google Scholar
     

  • 116.

    Pastor Rojo O, López San Román A, Albéniz Arbizu E, de la Hera Martínez A, Ripoll Sevillano E, Albillos Martínez A. Serum lipopolysaccharide-binding protein in endotoxemic patients with inflammatory bowel disease. Inflamm Bowel Dis. 2007;13(3):269–77.

    PubMed 

    Google Scholar
     

  • 117.

    Guo Y, Zhou G, He C, Yang W, He Z, Liu Z. Serum levels of lipopolysaccharide and 1,3-β-d-glucan refer to the severity in patients with Crohn’s disease. Mediat Inflamm. 2015;215:843089.


    Google Scholar
     

  • 118.

    Jaffer U, Wade RG, Gourlay T. Cytokines in the systemic inflammatory response syndrome: a review. HSR Proc Intensive Care Cardiovasc Anesth. 2010;2(3):161–75.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 119.

    Banks WA. Blood-brain barrier transport of cytokines: a mechanism for neuropathology. Curr Pharm Des. 2005;11(8):973–84.

    CAS 
    PubMed 

    Google Scholar
     

  • 120.

    Cohen SS, Min M, Cummings EE, Chen X, Sadowska GB, Sharma S, et al. Effects of interleukin-6 on the expression of tight junction proteins in isolated cerebral microvessels from yearling and adult sheep. NeuroImmunoModulation. 2013;20(5):264–73.

    CAS 
    PubMed 

    Google Scholar
     

  • 121.

    Lv S, Song H-L, Zhou Y, Li L-X, Cui W, Wang W, et al. Tumour necrosis factor-α affects blood–brain barrier permeability and tight junction-associated occludin in acute liver failure. Liver Int. 2010;30(8):1198–210.

    CAS 
    PubMed 

    Google Scholar
     

  • 122.

    Rochfort KD, Collins LE, Murphy RP, Cummins PM. Downregulation of blood-brain barrier phenotype by proinflammatory cytokines involves NADPH oxidase-dependent ROS generation: consequences for interendothelial adherens and tight junctions. PLoS ONE. 2014;9(7):e101815.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 123.

    Wang Y, Jin S, Sonobe Y, Cheng Y, Horiuchi H, Parajuli B, et al. Interleukin-1β induces blood–brain barrier disruption by downregulating sonic hedgehog in astrocytes. PLoS ONE. 2014;9(10):e110024.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 124.

    Lin R, Chen F, Wen S, Teng T, Pan Y, Huang H. Interleukin-10 attenuates impairment of the blood-brain barrier in a severe acute pancreatitis rat model. J Inflamm (Lond). 2018;15:4.


    Google Scholar
     

  • 125.

    Sonobe Y, Takeuchi H, Kataoka K, Li H, Jin S, Mimuro M, et al. Interleukin-25 expressed by brain capillary endothelial cells maintains blood–brain barrier function in a protein kinase Cepsilon-dependent manner. J Biol Chem. 2009;284(46):31834–42.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 126.

    Han Y, Zhao T, Cheng X, Zhao M, Gong S-H, Zhao Y-Q, et al. Cortical inflammation is increased in a DSS-induced colitis mouse model. Neurosci Bull. 2018;34(6):1058–66.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 127.

    Hathaway CA, Appleyard CB, Percy WH, Williams JL. Experimental colitis increases blood-brain barrier permeability in rabbits. Am J Physiol Gastrointest Liver Physiol. 1999;276(5):1174–80.


    Google Scholar
     

  • 128.

    Natah SS, Mouihate A, Pittman QJ, Sharkey KA. Disruption of the blood–brain barrier during TNBS colitis. Neurogastroenterol Motil. 2005;17(3):433–46.

    CAS 
    PubMed 

    Google Scholar
     

  • 129.

    Barnes SE, Zera KA, Ivison GT, Buckwalter MS, Engleman EG. Brain profiling in murine colitis and human epilepsy reveals neutrophils and TNFα as mediators of neuronal hyperexcitability. J Neuroinflammation. 2021;18(1):199.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 130.

    Weihong P, Abba JK. Interactions of cytokines with the blood–brain barrier: implications for feeding. Curr Pharm Des. 2003;9(10):827–34.


    Google Scholar
     

  • 131.

    Chavan SS, Pavlov VA, Tracey KJ. Mechanisms and therapeutic relevance of neuro-immune communication. Immunity. 2017;46(6):927–42.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 132.

    Browning KN, Verheijden S, Boeckxstaens GE. The vagus nerve in appetite regulation, mood, and intestinal inflammation. Gastroenterology. 2017;152(4):730–44.

    PubMed 

    Google Scholar
     

  • 133.

    Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci. 2008;9(1):46–56.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 134.

    Shaftel SS, Carlson TJ, Olschowka JA, Kyrkanides S, Matousek SB, O’Banion MK. Chronic interleukin-1β expression in mouse brain leads to leukocyte infiltration and neutrophil-independent blood–brain barrier permeability without overt neurodegeneration. J Neurosci. 2007;27(35):9301–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 135.

    Zonis S, Pechnick RN, Ljubimov VA, Mahgerefteh M, Wawrowsky K, Michelsen KS, et al. Chronic intestinal inflammation alters hippocampal neurogenesis. J Neuroinflammation. 2015;12(1):65.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 136.

    Haj-Mirzaian A, Amiri S, Amini-Khoei H, Hosseini M-J, Haj-Mirzaian A, Momeny M, et al. Anxiety- and depressive-like behaviors are associated with altered hippocampal energy and inflammatory status in a mouse model of Crohn’s disease. Neuroscience. 2017;366:124–37.

    CAS 
    PubMed 

    Google Scholar
     

  • 137.

    Heydarpour P, Rahimian R, Fakhfouri G, Khoshkish S, Fakhraei N, Salehi-Sadaghiani M, et al. Behavioral despair associated with a mouse model of Crohn’s disease: role of nitric oxide pathway. Prog Neuropsychopharmacol Biol Psychiatry. 2016;64:131–41.

    CAS 
    PubMed 

    Google Scholar
     

  • 138.

    Talley S, Valiauga R, Anderson L, Cannon AR, Choudhry MA, Campbell EM. DSS-induced inflammation in the colon drives a proinflammatory signature in the brain that is ameliorated by prophylactic treatment with the S100A9 inhibitor paquinimod. J Neuroinflammation. 2021;18(1):263.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 139.

    He X-f, Li L-l, Xian W-b, Li M-y, Zhang L-y, Xu J-h, et al. Chronic colitis exacerbates NLRP3-dependent neuroinflammation and cognitive impairment in middle-aged brain. J Neuroinflammation. 2021;18(1):153.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 140.

    Salvo E, Stokes P, Keogh CE, Brust-Mascher I, Hennessey C, Knotts TA, et al. A murine model of pediatric inflammatory bowel disease causes microbiota-gut-brain axis deficits in adulthood. Am J Physiol Gastrointest Liver Physiol. 2020;319(3):G361–74.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 141.

    Han Y, Ding L, Cheng X, Zhao M, Zhao T, Guo L, et al. Hypoxia augments cerebral inflammation in a dextran sulfate sodium-induced colitis mouse model. Front Cell Neurosci. 2020;14(433):611764.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 142.

    Riazi K, Galic MA, Kentner AC, Reid AY, Sharkey KA, Pittman QJ. Microglia-dependent alteration of glutamatergic synaptic transmission and plasticity in the hippocampus during peripheral inflammation. J Neurosci. 2015;35(12):4942–52.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 143.

    Riazi K, Galic MA, Kuzmiski JB, Ho W, Sharkey KA, Pittman QJ. Microglial activation and TNFalpha production mediate altered CNS excitability following peripheral inflammation. Proc Natl Acad Sci USA. 2008;105(44):17151–6.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 144.

    Wang K, Yuan CP, Wang W, Yang ZQ, Cui W, Mu LZ, et al. Expression of interleukin 6 in brain and colon of rats with TNBS-induced colitis. World J Gastroenterol. 2010;16(18):2252–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 145.

    Hovatta I, Juhila J, Donner J. Oxidative stress in anxiety and comorbid disorders. Neurosci Res. 2010;68(4):261–75.

    CAS 
    PubMed 

    Google Scholar
     

  • 146.

    Rezin GT, Amboni G, Zugno AI, Quevedo J, Streck EL. Mitochondrial dysfunction and psychiatric disorders. Neurochem Res. 2008;34(6):1021.

    PubMed 

    Google Scholar
     

  • 147.

    Gawryluk JW, Wang J-F, Andreazza AC, Shao L, Young LT. Decreased levels of glutathione, the major brain antioxidant, in post-mortem prefrontal cortex from patients with psychiatric disorders. Int J Neuropsychopharmacol. 2011;14(1):123–30.

    CAS 
    PubMed 

    Google Scholar
     

  • 148.

    Alex P, Zachos NC, Nguyen T, Gonzales L, Chen T-E, Conklin LS, et al. Distinct cytokine patterns identified from multiplex profiles of murine DSS and TNBS-induced colitis. Inflamm Bowel Dis. 2009;15(3):341–52.

    PubMed 

    Google Scholar
     

  • 149.

    Dhir A, Kulkarni SK. Nitric oxide and major depression. Nitric Oxide. 2011;24(3):125–31.

    CAS 
    PubMed 

    Google Scholar
     

  • 150.

    Wegener G, Volke V, Rosenberg R. Endogenous nitric oxide decreases hippocampal levels of serotonin and dopamine in vivo. Br J Pharmacol. 2000;130(3):575–80.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 151.

    Calabrese V, Mancuso C, Calvani M, Rizzarelli E, Butterfield DA, Giuffrida Stella AM. Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity. Nat Rev Neurosci. 2007;8(10):766–75.

    CAS 
    PubMed 

    Google Scholar
     

  • 152.

    Wang S, Song R, Wang Z, Jing Z, Wang S, Ma J. S100A8/A9 in inflammation. Front Immunol. 2018;9:1298.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 153.

    Corbin BD, Seeley EH, Raab A, Feldmann J, Miller MR, Torres VJ, et al. Metal chelation and inhibition of bacterial growth in tissue abscesses. Science. 2008;319(5865):962–5.

    CAS 
    PubMed 

    Google Scholar
     

  • 154.

    Sunahori K, Yamamura M, Yamana J, Takasugi K, Kawashima M, Yamamoto H, et al. The S100A8/A9 heterodimer amplifies proinflammatory cytokine production by macrophages via activation of nuclear factor kappa B and p38 mitogen-activated protein kinase in rheumatoid arthritis. Arthritis Res Ther. 2006;8(3):R69.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 155.

    Altwegg LA, Neidhart M, Hersberger M, Müller S, Eberli FR, Corti R, et al. Myeloid-related protein 8/14 complex is released by monocytes and granulocytes at the site of coronary occlusion: a novel, early, and sensitive marker of acute coronary syndromes. Eur Heart J. 2007;28(8):941–8.

    CAS 
    PubMed 

    Google Scholar
     

  • 156.

    Austermann J, Zenker S, Roth J. S100-alarmins: potential therapeutic targets for arthritis. Expert Opin Ther Targets. 2017;21(7):739–51.

    CAS 
    PubMed 

    Google Scholar
     

  • 157.

    Bogumil T, Rieckmann P, Kubuschok B, Felgenhauer K, Brück W. Serum levels of macrophage-derived protein MRP-8/14 are elevated in active multiple sclerosis. Neurosci Lett. 1998;247(2–3):195–7.

    CAS 
    PubMed 

    Google Scholar
     

  • 158.

    Frosch M, Vogl T, Waldherr R, Sorg C, Sunderkötter C, Roth J. Expression of MRP8 and MRP14 by macrophages is a marker for severe forms of glomerulonephritis. J Leukoc Biol. 2004;75(2):198–206.

    CAS 
    PubMed 

    Google Scholar
     

  • 159.

    Bjarnason I. The use of fecal calprotectin in inflammatory bowel disease. Gastroenterol Hepatol (N Y). 2017;13(1):53–6.


    Google Scholar
     

  • 160.

    Yan L, Bjork P, Butuc R, Gawdzik J, Earley J, Kim G, et al. Beneficial effects of quinoline-3-carboxamide (ABR-215757) on atherosclerotic plaque morphology in S100A12 transgenic ApoE null mice. Atherosclerosis. 2013;228(1):69–79.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 161.

    Björk P, Björk A, Vogl T, Stenström M, Liberg D, Olsson A, et al. Identification of human S100A9 as a novel target for treatment of autoimmune disease via binding to quinoline-3-carboxamides. PLoS Biol. 2009;7(4):e97.

    PubMed 

    Google Scholar
     

  • 162.

    Stankiewicz AM, Goscik J, Majewska A, Swiergiel AH, Juszczak GR. The effect of acute and chronic social stress on the hippocampal transcriptome in mice. PLoS ONE. 2015;10(11):e0142195.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 163.

    Guo H, Callaway JB, Ting JPY. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat Med. 2015;21(7):677–87.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 164.

    Song L, Pei L, Yao S, Wu Y, Shang Y. NLRP3 inflammasome in neurological diseases, from functions to therapies. Front Cell Neurosci. 2017;11:63.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 165.

    Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid & #x3b2. Sci Transl Med. 2012;4(147):14711.


    Google Scholar
     

  • 166.

    Da Mesquita S, Louveau A, Vaccari A, Smirnov I, Cornelison RC, Kingsmore KM, et al. Functional aspects of meningeal lymphatics in ageing and Alzheimer’s disease. Nature. 2018;560(7717):185–91.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 167.

    Rasmussen MK, Mestre H, Nedergaard M. The glymphatic pathway in neurological disorders. Lancet Neurol. 2018;17(11):1016–24.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 168.

    Verheggen ICM, Van Boxtel MPJ, Verhey FRJ, Jansen JFA, Backes WH. Interaction between blood–brain barrier and glymphatic system in solute clearance. Neurosci Biobehav Rev. 2018;90:26–33.

    CAS 
    PubMed 

    Google Scholar
     

  • 169.

    Kinney JW, Bemiller SM, Murtishaw AS, Leisgang AM, Salazar AM, Lamb BT. Inflammation as a central mechanism in Alzheimer’s disease. Alzheimers Dement (N Y). 2018;4:575–90.


    Google Scholar
     

  • 170.

    Matsuoka Y, Picciano M, Malester B, LaFrancois J, Zehr C, Daeschner JM, et al. Inflammatory responses to amyloidosis in a transgenic mouse model of Alzheimer’s disease. Am J Pathol. 2001;158(4):1345–54.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 171.

    Gold M, El Khoury J. β-amyloid, microglia, and the inflammasome in Alzheimer’s disease. Semin Immunopathol. 2015;37(6):607–11.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 172.

    Schläger C, Körner H, Krueger M, Vidoli S, Haberl M, Mielke D, et al. Effector T-cell trafficking between the leptomeninges and the cerebrospinal fluid. Nature. 2016;530(7590):349–53.

    PubMed 

    Google Scholar
     

  • 173.

    Streit WJ, Mrak RE, Griffin WST. Microglia and neuroinflammation: a pathological perspective. J Neuroinflammation. 2004;1(1):14.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 174.

    Ginhoux F, Lim S, Hoeffel G, Low D, Huber T. Origin and differentiation of microglia. Frontiers in Cellular Neuroscience. 2013;7(45).

  • 175.

    Wake H, Fields RD. Physiological function of microglia. Neuron Glia Biol. 2011;7(1):1–3.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 176.

    Brás JP, Bravo J, Freitas J, Barbosa MA, Santos SG, Summavielle T, et al. TNF-alpha-induced microglia activation requires miR-342: impact on NF-kB signaling and neurotoxicity. Cell Death Dis. 2020;11(6):415.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 177.

    Kaushik DK, Thounaojam MC, Kumawat KL, Gupta M, Basu A. Interleukin-1β orchestrates underlying inflammatory responses in microglia via Krüppel-like factor 4. J Neurochem. 2013;127(2):233–44.

    CAS 
    PubMed 

    Google Scholar
     

  • 178.

    Capuco A, Urits I, Hasoon J, Chun R, Gerald B, Wang JK, et al. Current perspectives on gut microbiome dysbiosis and depression. Adv Ther. 2020;37(4):1328–46.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 179.

    Krady JK, Lin H-W, Liberto CM, Basu A, Kremlev SG, Levison SW. Ciliary neurotrophic factor and interleukin-6 differentially activate microglia. J Neurosci Res. 2008;86(7):1538–47.

    CAS 
    PubMed 

    Google Scholar
     

  • 180.

    Reynolds MR, Berry RW, Binder LI. Nitration in neurodegeneration: deciphering the “Hows” “nYs.” Biochemistry. 2007;46(25):7325–36.

    CAS 
    PubMed 

    Google Scholar
     

  • 181.

    Swanson KV, Deng M, Ting JPY. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol. 2019;19(8):477–89.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 182.

    Fitzpatrick FA. Cyclooxygenase enzymes: regulation and function. Curr Pharm Des. 2004;10(6):577–88.

    CAS 
    PubMed 

    Google Scholar
     

  • 183.

    Qin L, Wu X, Block ML, Liu Y, Breese GR, Hong JS, et al. Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia. 2007;55(5):453–62.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 184.

    Hanlon LA, Huh JW, Raghupathi R. Minocycline transiently reduces microglia/macrophage activation but exacerbates cognitive deficits following repetitive traumatic brain injury in the neonatal rat. J Neuropathol Exp Neurol. 2016;75(3):214–26.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 185.

    Fukumoto K, Takagi N, Yamamoto R, Moriyama Y, Takeo S, Tanonaka K. Prostanoid EP1 receptor antagonist reduces blood-brain barrier leakage after cerebral ischemia. Eur J Pharmacol. 2010;640(1–3):82–6.

    CAS 
    PubMed 

    Google Scholar
     

  • 186.

    Ikeda-Matsuo Y, Tanji H, Narumiya S, Sasaki Y. Inhibition of prostaglandin E2 EP3 receptors improves stroke injury via anti-inflammatory and anti-apoptotic mechanisms. J Neuroimmunol. 2011;238(1–2):34–43.

    CAS 
    PubMed 

    Google Scholar
     

  • 187.

    Frankowski JC, DeMars KM, Ahmad AS, Hawkins KE, Yang C, Leclerc JL, et al. Detrimental role of the EP1 prostanoid receptor in blood-brain barrier damage following experimental ischemic stroke. Sci Rep. 2015;5(1):17956.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 188.

    Liang X, Lin L, Woodling NS, Wang Q, Anacker C, Pan T, et al. Signaling via the prostaglandin E2 receptor EP4 exerts neuronal and vascular protection in a mouse model of cerebral ischemia. J Clin Invest. 2011;121(11):4362–71.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 189.

    DeMars KM, McCrea AO, Siwarski DM, Sanz BD, Yang C, Candelario-Jalil E. Protective effects of L-902,688, a prostanoid EP4 receptor agonist, against acute blood–brain barrier damage in experimental ischemic stroke. Front Neurosci. 2018;12:89.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 190.

    Guillot FL, Audus KL. Angiotensin peptide regulation of fluid-phase endocytosis in brain microvessel endothelial cell monolayers. J Cereb Blood Flow Metab. 1990;10(6):827–34.

    CAS 
    PubMed 

    Google Scholar
     

  • 191.

    Minami T, Okazaki J, Kawabata A, Kawaki H, Okazaki Y, Tohno Y. Roles of nitric oxide and prostaglandins in the increased permeability of the blood–brain barrier caused by lipopolysaccharide. Environ Toxicol Pharmacol. 1998;5(1):35–41.

    CAS 
    PubMed 

    Google Scholar
     

  • 192.

    Xaio H, Banks WA, Niehoff ML, Morley JE. Effect of LPS on the permeability of the blood–brain barrier to insulin. Brain Res. 2001;896(1–2):36–42.

    CAS 
    PubMed 

    Google Scholar
     

  • 193.

    Griffin ÉW, Skelly DT, Murray CL, Cunningham C. Cyclooxygenase-1-dependent prostaglandins mediate susceptibility to systemic inflammation-induced acute cognitive dysfunction. J Neurosci. 2013;33(38):15248–58.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 194.

    Hassan AM, Jain P, Reichmann F, Mayerhofer R, Farzi A, Schuligoi R, et al. Repeated predictable stress causes resilience against colitis-induced behavioral changes in mice. Front Behav Neurosci. 2014;8:386.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 195.

    Cazareth J, Guyon A, Heurteaux C, Chabry J, Petit-Paitel A. Molecular and cellular neuroinflammatory status of mouse brain after systemic lipopolysaccharide challenge: importance of CCR2/CCL2 signaling. J Neuroinflammation. 2014;11:132.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 196.

    Banisadr G, Quéraud-Lesaux F, Boutterin MC, Pélaprat D, Zalc B, Rostène W, et al. Distribution, cellular localization and functional role of CCR2 chemokine receptors in adult rat brain. J Neurochem. 2002;81(2):257–69.

    CAS 
    PubMed 

    Google Scholar
     

  • 197.

    Curzytek K, Leśkiewicz M. Targeting the CCL2-CCR2 axis in depressive disorders. Pharmacol Rep. 2021;73(4):1052–62.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 198.

    Charo IF, Myers SJ, Herman A, Franci C, Connolly AJ, Coughlin SR. Molecular cloning and functional expression of two monocyte chemoattractant protein 1 receptors reveals alternative splicing of the carboxyl-terminal tails. Proc Natl Acad Sci USA. 1994;91(7):2752–6.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 199.

    El Khoury J, Toft M, Hickman SE, Means TK, Terada K, Geula C, et al. Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease. Nat Med. 2007;13(4):432–8.

    PubMed 

    Google Scholar
     

  • 200.

    DeCarolis NA, Eisch AJ. Hippocampal neurogenesis as a target for the treatment of mental illness: a critical evaluation. Neuropharmacology. 2010;58(6):884–93.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 201.

    Bremner JD, Narayan M, Anderson ER, Staib LH, Miller HL, Charney DS. Hippocampal volume reduction in major depression. Am J Psychiatry. 2000;157(1):115–8.

    CAS 
    PubMed 

    Google Scholar
     

  • 202.

    Stockmeier CA, Mahajan GJ, Konick LC, Overholser JC, Jurjus GJ, Meltzer HY, et al. Cellular changes in the postmortem hippocampus in major depression. Biol Psychiatry. 2004;56(9):640–50.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 203.

    Toda T, Parylak SL, Linker SB, Gage FH. The role of adult hippocampal neurogenesis in brain health and disease. Mol Psychiatry. 2019;24(1):67–87.

    CAS 
    PubMed 

    Google Scholar
     

  • 204.

    Aarum J, Sandberg K, Haeberlein SLB, Persson MAA. Migration and differentiation of neural precursor cells can be directed by microglia. Proc Natl Acad Sci. 2003;100(26):15983.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 205.

    Kreisel T, Wolf B, Keshet E, Licht T. Unique role for dentate gyrus microglia in neuroblast survival and in VEGF-induced activation. Glia. 2019;67(4):594–618.

    PubMed 

    Google Scholar
     

  • 206.

    Sierra A, Encinas JM, Deudero JJP, Chancey JH, Enikolopov G, Overstreet-Wadiche LS, et al. Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis. Cell Stem Cell. 2010;7(4):483–95.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 207.

    Chen L-M, Bao C-H, Wu Y, Liang S-H, Wang D, Wu L-Y, et al. Tryptophan-kynurenine metabolism: a link between the gut and brain for depression in inflammatory bowel disease. J Neuroinflammation. 2021;18(1):135.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 208.

    Sherr CJ, Roberts JM. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 1999;13(12):1501–12.

    CAS 
    PubMed 

    Google Scholar
     

  • 209.

    Pechnick RN, Zonis S, Wawrowsky K, Pourmorady J, Chesnokova V. p21Cip1 restricts neuronal proliferation in the subgranular zone of the dentate gyrus of the hippocampus. Proc Natl Acad Sci USA. 2008;105(4):1358–63.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 210.

    Zonis S, Ljubimov VA, Mahgerefteh M, Pechnick RN, Wawrowsky K, Chesnokova V. p21Cip restrains hippocampal neurogenesis and protects neuronal progenitors from apoptosis during acute systemic inflammation. Hippocampus. 2013;23(12):1383–94.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 211.

    Cacci E, Claasen JH, Kokaia Z. Microglia-derived tumor necrosis factor-alpha exaggerates death of newborn hippocampal progenitor cells in vitro. J Neurosci Res. 2005;80(6):789–97.

    CAS 
    PubMed 

    Google Scholar
     

  • 212.

    Iosif RE, Ekdahl CT, Ahlenius H, Pronk CJH, Bonde S, Kokaia Z, et al. Tumor necrosis factor receptor 1 is a negative regulator of progenitor proliferation in adult hippocampal neurogenesis. J Neurosci. 2006;26(38):9703.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 213.

    Wajant H, Siegmund D. TNFR1 and TNFR2 in the Control of the Life and Death Balance of Macrophages. Frontiers in Cell and Developmental Biology. 2019;7(91).

  • 214.

    Wang X, Fu S, Wang Y, Yu P, Hu J, Gu W, et al. Interleukin-1beta mediates proliferation and differentiation of multipotent neural precursor cells through the activation of SAPK/JNK pathway. Mol Cell Neurosci. 2007;36(3):343–54.

    PubMed 

    Google Scholar
     

  • 215.

    Koo JW, Duman RS. IL-1beta is an essential mediator of the antineurogenic and anhedonic effects of stress. Proc Natl Acad Sci USA. 2008;105(2):751–6.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 216.

    Koo JW, Duman RS. IL-1β is an essential mediator of the antineurogenic and anhedonic effects of stress. Proc Natl Acad Sci. 2008;105(2):751.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 217.

    Goshen I, Kreisel T, Ben-Menachem-Zidon O, Licht T, Weidenfeld J, Ben-Hur T, et al. Brain interleukin-1 mediates chronic stress-induced depression in mice via adrenocortical activation and hippocampal neurogenesis suppression. Mol Psychiatry. 2008;13(7):717–28.

    CAS 
    PubMed 

    Google Scholar
     

  • 218.

    Barrientos RM, Sprunger DB, Campeau S, Higgins EA, Watkins LR, Rudy JW, et al. Brain-derived neurotrophic factor mRNA downregulation produced by social isolation is blocked by intrahippocampal interleukin-1 receptor antagonist. Neuroscience. 2003;121(4):847–53.

    CAS 
    PubMed 

    Google Scholar
     

  • 219.

    Arrigoni E, Greene RW. Schaffer collateral and perforant path inputs activate different subtypes of NMDA receptors on the same CA1 pyramidal cell. Br J Pharmacol. 2004;142(2):317–22.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 220.

    Stellwagen D, Beattie EC, Seo JY, Malenka RC. Differential regulation of AMPA receptor and GABA receptor trafficking by tumor necrosis factor-alpha. J Neurosci. 2005;25(12):3219–28.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 221.

    Stellwagen D, Malenka RC. Synaptic scaling mediated by glial TNF-alpha. Nature. 2006;440(7087):1054–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 222.

    Dong X-x, Wang Y, Qin Z-h. Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta pharmacologica Sinica. 2009;30(4):379–87.

  • 223.

    Van Damme P, Bogaert E, Dewil M, Hersmus N, Kiraly D, Scheveneels W, et al. Astrocytes regulate GluR2 expression in motor neurons and their vulnerability to excitotoxicity. Proc Natl Acad Sci USA. 2007;104(37):14825–30.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 224.

    Bell JD, Park E, Ai J, Baker AJ. PICK1-mediated GluR2 endocytosis contributes to cellular injury after neuronal trauma. Cell Death Differ. 2009;16(12):1665–80.

    CAS 
    PubMed 

    Google Scholar
     

  • 225.

    Foster AC, Whetsell WO Jr, Bird ED, Schwarcz R. Quinolinic acid phosphoribosyltransferase in human and rat brain: activity in Huntington’s disease and in quinolinate-lesioned rat striatum. Brain Res. 1985;336(2):207–14.

    CAS 
    PubMed 

    Google Scholar
     

  • 226.

    Odaira T, Nakagawasai O, Takahashi K, Nemoto W, Sakuma W, Lin J-R, et al. Mechanisms underpinning AMP-activated protein kinase-related effects on behavior and hippocampal neurogenesis in an animal model of depression. Neuropharmacology. 2019;150:121–33.

    CAS 
    PubMed 

    Google Scholar
     

  • 227.

    Peixoto CA, Oliveira WHd, Araújo SMdR, Nunes AKS. AMPK activation: Role in the signaling pathways of neuroinflammation and neurodegeneration. Experimental Neurology. 2017;298:31–41.

  • 228.

    Nakagawasai O, Yamada K, Odaira T, Takahashi K, Nemoto W, Sakuma W, et al. Liver hydrolysate improves depressive-like behavior in olfactory bulbectomized mice: Involvement of hippocampal neurogenesis through the AMPK/BDNF/CREB pathway. J Pharmacol Sci. 2020;143(1):52–5.

    CAS 
    PubMed 

    Google Scholar
     

  • 229.

    Nakagawasai O, Yamada K, Takahashi K, Odaira T, Sakuma W, Ishizawa D, et al. Liver hydrolysate prevents depressive-like behavior in an animal model of colitis: Involvement of hippocampal neurogenesis via the AMPK/BDNF pathway. Behavioural Brain Research. 2020;390:112640.

  • 230.

    Thomas JO, Travers AA. HMG1 and 2, and ‘architectural’ DNA-binding proteins. Trends Biochem Sci. 2001;26(3):167–74.

    CAS 
    PubMed 

    Google Scholar
     

  • 231.

    Paudel YN, Shaikh MF, Chakraborti A, Kumari Y, Aledo-Serrano Á, Aleksovska K, et al. HMGB1: A Common Biomarker and Potential Target for TBI, Neuroinflammation, Epilepsy, and Cognitive Dysfunction. Frontiers in Neuroscience. 2018;12(628).

  • 232.

    Hei Y, Chen R, Yi X, Long Q, Gao D, Liu W. HMGB1 Neutralization attenuates hippocampal neuronal death and cognitive impairment in rats with chronic cerebral hypoperfusion via suppressing inflammatory responses and oxidative stress. Neuroscience. 2018;383:150–9.

    PubMed 

    Google Scholar
     

  • 233.

    Mazarati A, Maroso M, Iori V, Vezzani A, Carli M. High-mobility group box-1 impairs memory in mice through both toll-like receptor 4 and receptor for advanced glycation end products. Exp Neurol. 2011;232(2):143–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 234.

    Sasaki T, Liu K, Agari T, Yasuhara T, Morimoto J, Okazaki M, et al. Anti-high mobility group box 1 antibody exerts neuroprotection in a rat model of Parkinson’s disease. Exp Neurol. 2016;275:220–31.

    CAS 
    PubMed 

    Google Scholar
     

  • 235.

    Andrews PW, Bharwani A, Lee KR, Fox M, Thomson JA. Is serotonin an upper or a downer? The evolution of the serotonergic system and its role in depression and the antidepressant response. Neurosci Biobehav Rev. 2015;51:164–88.

    CAS 
    PubMed 

    Google Scholar
     

  • 236.

    Baumeister AA, Hawkins MF, Uzelac SM. The myth of reserpine-induced depression: role in the historical development of the monoamine hypothesis. J Hist Neurosci. 2003;12(2):207–20.

    PubMed 

    Google Scholar
     

  • 237.

    Rutter JJ, Auerbach SB. Acute uptake inhibition increases extracellular serotonin in the rat forebrain. J Pharmacol Exp Ther. 1993;265(3):1319–24.

    CAS 
    PubMed 

    Google Scholar
     

  • 238.

    Bymaster FP, Zhang W, Carter PA, Shaw J, Chernet E, Phebus L, et al. Fluoxetine, but not other selective serotonin uptake inhibitors, increases norepinephrine and dopamine extracellular levels in prefrontal cortex. Psychopharmacology. 2002;160(4):353–61.

    CAS 
    PubMed 

    Google Scholar
     

  • 239.

    Oswald I, Brezinova V, Dunleavy DLF. On the slowness of action of tricyclic antidepressant drugs. Br J Psychiatry. 1972;120(559):673–7.

    CAS 
    PubMed 

    Google Scholar
     

  • 240.

    Ruhé HG, Mason NS, Schene AH. Mood is indirectly related to serotonin, norepinephrine and dopamine levels in humans: a meta-analysis of monoamine depletion studies. Mol Psychiatry. 2007;12(4):331–59.

    PubMed 

    Google Scholar
     

  • 241.

    Jacobs BL, van Praag H, Gage FH. Adult brain neurogenesis and psychiatry: a novel theory of depression. Mol Psychiatry. 2000;5(3):262–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 242.

    Guillemin GJ, Smythe G, Takikawa O, Brew BJ. Expression of indoleamine 2,3-dioxygenase and production of quinolinic acid by human microglia, astrocytes, and neurons. Glia. 2005;49(1):15–23.

    PubMed 

    Google Scholar
     

  • 243.

    Oxenkrug GF. Tryptophan kynurenine metabolism as a common mediator of genetic and environmental impacts in major depressive disorder: the serotonin hypothesis revisited 40 years later. Isr J Psychiatry Relat Sci. 2010;47(1):56–63.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 244.

    Schwarcz R, Bruno JP, Muchowski PJ, Wu H-Q. Kynurenines in the mammalian brain: when physiology meets pathology. Nat Rev Neurosci. 2012;13(7):465–77.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 245.

    Tavares RG, Tasca CI, Santos CE, Alves LB, Porciúncula LO, Emanuelli T, et al. Quinolinic acid stimulates synaptosomal glutamate release and inhibits glutamate uptake into astrocytes. Neurochem Int. 2002;40(7):621–7.

    CAS 
    PubMed 

    Google Scholar
     

  • 246.

    Lugo-Huitrón R, Ugalde Muñiz P, Pineda B, Pedraza-Chaverrí J, Ríos C, Pérez-de la Cruz V. Quinolinic acid: an endogenous neurotoxin with multiple targets. Oxid Med Cell Longev. 2013;2013:104024.

  • 247.

    Bercik P, Verdu EF, Foster JA, Macri J, Potter M, Huang X, et al. Chronic gastrointestinal inflammation induces anxiety-like behavior and alters central nervous system biochemistry in mice. Gastroenterology. 2010;139(6):2102-12.e1.

    CAS 
    PubMed 

    Google Scholar
     

  • 248.

    Shiomi Y, Nishiumi S, Ooi M, Hatano N, Shinohara M, Yoshie T, et al. GCMS-based metabolomic study in mice with colitis induced by dextran sulfate sodium. Inflamm Bowel Dis. 2011;17(11):2261–74.

    PubMed 

    Google Scholar
     

  • 249.

    Gurtner GJ, Newberry RD, Schloemann SR, McDonald KG, Stenson WF. Inhibition of indoleamine 2,3-dioxygenase augments trinitrobenzene sulfonic acid colitis in mice. Gastroenterology. 2003;125(6):1762–73.

    CAS 
    PubMed 

    Google Scholar
     

  • 250.

    Sroor HM, Hassan AM, Zenz G, Valadez-Cosmes P, Farzi A, Holzer P, et al. Experimental colitis reduces microglial cell activation in the mouse brain without affecting microglial cell numbers. Sci Rep. 2019;9(1):20217.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 251.

    Wolf AM, Wolf D, Rumpold H, Moschen AR, Kaser A, Obrist P, et al. Overexpression of indoleamine 2,3-dioxygenase in human inflammatory bowel disease. Clin Immunol. 2004;113(1):47–55.

    CAS 
    PubMed 

    Google Scholar
     

  • 252.

    Ghia JE, Li N, Wang H, Collins M, Deng Y, El–Sharkawy RT, et al. Serotonin Has a Key Role in Pathogenesis of Experimental Colitis. Gastroenterology. 2009;137(5):1649–60.

  • 253.

    van der Velden VH. Glucocorticoids: mechanisms of action and anti-inflammatory potential in asthma. Mediators Inflamm. 1998;7(4):229–37.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 254.

    Herman JP, McKlveen JM, Ghosal S, Kopp B, Wulsin A, Makinson R, et al. Regulation of the hypothalamic-pituitary-adrenocortical stress response. Compr Physiol. 2016;6(2):603–21.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 255.

    Vale W, Spiess J, Rivier C, Rivier J. Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin. Science. 1981;213(4514):1394–7.

    CAS 
    PubMed 

    Google Scholar
     

  • 256.

    Rivier C, Vale W. Modulation of stress-induced ACTH release by corticotropin-releasing factor, catecholamines and vasopressin. Nature. 1983;305(5932):325–7.

    CAS 
    PubMed 

    Google Scholar
     

  • 257.

    Smith SM, Vale WW. The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. Dialogues Clin Neurosci. 2006;8(4):383–95.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 258.

    Charmandari E, Tsigos C, Chrousos G. Endocrinology of the stress response. Annu Rev Physiol. 2005;67:259–84.

    CAS 
    PubMed 

    Google Scholar
     

  • 259.

    Watkins LR, Goehler LE, Relton JK, Tartaglia N, Silbert L, Martin D, et al. Blockade of interleukin-1 induced hyperthermia by subdiaphragmatic vagotomy: evidence for vagal mediation of immune-brain communication. Neurosci Lett. 1995;183(1):27–31.

    CAS 
    PubMed 

    Google Scholar
     

  • 260.

    Ching S, Zhang H, Belevych N, He L, Lai W, Pu X-a, et al. Endothelial-Specific Knockdown of Interleukin-1 (IL-1) Type 1 Receptor Differentially Alters CNS Responses to IL-1 Depending on Its Route of Administration. The Journal of Neuroscience. 2007;27(39):10476.

  • 261.

    Elander L, Engström L, Ruud J, Mackerlova L, Jakobsson P-J, Engblom D, et al. Inducible prostaglandin E2 synthesis interacts in a temporally supplementary sequence with constitutive prostaglandin-synthesizing enzymes in creating the hypothalamic-pituitary-adrenal axis response to immune challenge. J Neurosci. 2009;29(5):1404.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 262.

    Capuron L, Miller AH. Immune system to brain signaling: neuropsychopharmacological implications. Pharmacol Ther. 2011;130(2):226–38.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 263.

    Rogatsky I, Logan SK, Garabedian MJ. Antagonism of glucocorticoid receptor transcriptional activation by the c-Jun N-terminal kinase. Proc Natl Acad Sci. 1998;95(5):2050.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 264.

    Wang X, Wu H, Miller AH. Interleukin 1α (IL-1α) induced activation of p38 mitogen-activated protein kinase inhibits glucocorticoid receptor function. Mol Psychiatry. 2004;9(1):65–75.

    CAS 
    PubMed 

    Google Scholar
     

  • 265.

    Pariante CM, Pearce BD, Pisell TL, Sanchez CI, Po C, Su C, et al. The proinflammatory cytokine, interleukin-1α, reduces glucocorticoid receptor translocation and function1. Endocrinology. 1999;140(9):4359–66.

    CAS 
    PubMed 

    Google Scholar
     

  • 266.

    McKay LI, Cidlowski JA. Molecular control of immune/inflammatory responses: interactions between nuclear factor-κb and steroid receptor-signaling pathways. Endocr Rev. 1999;20(4):435–59.

    CAS 
    PubMed 

    Google Scholar
     

  • 267.

    Steensberg A, Fischer CP, Keller C, Møller K, Pedersen BK. IL-6 enhances plasma IL-1ra, IL-10, and cortisol in humans. Am J Physiol Endocrinol Metab. 2003;285(2):E433–7.

    CAS 
    PubMed 

    Google Scholar
     

  • 268.

    Straub RH, Vogl D, Gross V, Lang B, Schölmerich J, Andus T. Association of humoral markers of inflammation and dehydroepiandrosterone sulfate or cortisol serum levels in patients with chronic inflammatory bowel disease. Am J Gastroenterol. 1998;93(11):2197–202.

    CAS 
    PubMed 

    Google Scholar
     

  • 269.

    Fries E, Dettenborn L, Kirschbaum C. The cortisol awakening response (CAR): facts and future directions. Int J Psychophysiol. 2009;72(1):67–73.

    PubMed 

    Google Scholar
     

  • 270.

    Atreya R, Neurath MF. Involvement of IL-6 in the pathogenesis of inflammatory bowel disease and colon cancer. Clin Rev Allergy Immunol. 2005;28(3):187–96.

    CAS 
    PubMed 

    Google Scholar
     

  • 271.

    Mudter J, Neurath MF. Il-6 signaling in inflammatory bowel disease: pathophysiological role and clinical relevance. Inflamm Bowel Dis. 2007;13(8):1016–23.

    PubMed 

    Google Scholar
     

  • 272.

    Luo C, Zhang H. The role of proinflammatory pathways in the pathogenesis of colitis-associated colorectal cancer. Mediat Inflamm. 2017;2017:5126048.

  • 273.

    Pellissier S, Dantzer C, Mondillon L, Trocme C, Gauchez A-S, Ducros V, et al. Relationship between vagal tone, cortisol, TNF-alpha, epinephrine and negative affects in Crohn’s disease and irritable bowel syndrome. PLoS ONE. 2014;9(9):e105328.

  • 274.

    Straub RH, Herfarth H, Falk W, Andus T, Schölmerich J. Uncoupling of the sympathetic nervous system and the hypothalamic–pituitary–adrenal axis in inflammatory bowel disease? J Neuroimmunol. 2002;126(1):116–25.

    CAS 
    PubMed 

    Google Scholar
     

  • 275.

    Reichmann F, Hassan AM, Farzi A, Jain P, Schuligoi R, Holzer P. Dextran sulfate sodium-induced colitis alters stress-associated behaviour and neuropeptide gene expression in the amygdala-hippocampus network of mice. Sci Rep. 2015;5:9970.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 276.

    Holzer P, Farzi A, Hassan AM, Zenz G, Jačan A, Reichmann F. Visceral inflammation and immune activation stress the brain. Front Immunol. 2017;8:1613.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 277.

    Deng QJ, Deng DJ, Che J, Zhao HR, Yu JJ, Lu YY. Hypothalamic paraventricular nucleus stimulation reduces intestinal injury in rats with ulcerative colitis. World J Gastroenterol. 2016;22(14):3769–76.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 278.

    de Jonge WJ, van der Zanden EP, The FO, Bijlsma MF, van Westerloo DJ, Bennink RJ, et al. Stimulation of the vagus nerve attenuates macrophage activation by activating the Jak2-STAT3 signaling pathway. Nat Immunol. 2005;6(8):844–51.

    PubMed 

    Google Scholar
     

  • 279.

    Goverse G, Stakenborg M, Matteoli G. The intestinal cholinergic anti-inflammatory pathway. J Physiol. 2016;594(20):5771–80.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 280.

    Poe GR, Foote S, Eschenko O, Johansen JP, Bouret S, Aston-Jones G, et al. Locus coeruleus: a new look at the blue spot. Nat Rev Neurosci. 2020;21(11):644–59.

    CAS 
    PubMed 

    Google Scholar
     

  • 281.

    Itoi K, Jiang YQ, Iwasaki Y, Watson SJ. Regulatory mechanisms of corticotropin-releasing hormone and vasopressin gene expression in the hypothalamus. J Neuroendocrinol. 2004;16(4):348–55.

    CAS 
    PubMed 

    Google Scholar
     

  • 282.

    Ma S, Morilak DA. Chronic intermittent cold stress sensitises the hypothalamic-pituitary-adrenal response to a novel acute stress by enhancing noradrenergic influence in the rat paraventricular nucleus. J Neuroendocrinol. 2005;17(11):761–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 283.

    Reyes BA, Valentino RJ, Xu G, Van Bockstaele EJ. Hypothalamic projections to locus coeruleus neurons in rat brain. Eur J Neurosci. 2005;22(1):93–106.

    PubMed 

    Google Scholar
     

  • 284.

    Jedema HP, Grace AA. Corticotropin-releasing hormone directly activates noradrenergic neurons of the locus ceruleus recorded in vitro. J Neurosci. 2004;24(43):9703–13.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 285.

    Reyes BA, Valentino RJ, Van Bockstaele EJ. Stress-induced intracellular trafficking of corticotropin-releasing factor receptors in rat locus coeruleus neurons. Endocrinology. 2008;149(1):122–30.

    CAS 
    PubMed 

    Google Scholar
     

  • 286.

    Valentino RJ, Van Bockstaele E. Convergent regulation of locus coeruleus activity as an adaptive response to stress. Eur J Pharmacol. 2008;583(2–3):194–203.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 287.

    Dunn AJ, Swiergiel AH. The role of corticotropin-releasing factor and noradrenaline in stress-related responses, and the inter-relationships between the two systems. Eur J Pharmacol. 2008;583(2–3):186–93.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 288.

    Ziegler DR, Cass WA, Herman JP. Excitatory influence of the locus coeruleus in hypothalamic-pituitary-adrenocortical axis responses to stress. J Neuroendocrinol. 1999;11(5):361–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 289.

    Roy HA, Green AL. The central autonomic network and regulation of bladder function. Front Neurosci. 2019;13(535).

  • 290.

    Benarroch EE. The central autonomic network: functional organization, dysfunction, and perspective. Mayo Clin Proc. 1993;68(10):988–1001.

    CAS 
    PubMed 

    Google Scholar
     

  • 291.

    Ulrich-Lai YM, Herman JP. Neural regulation of endocrine and autonomic stress responses. Nat Rev Neurosci. 2009;10(6):397–409.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 292.

    Gianaros PJ, Van Der Veen FM, Jennings JR. Regional cerebral blood flow correlates with heart period and high-frequency heart period variability during working-memory tasks: Implications for the cortical and subcortical regulation of cardiac autonomic activity. Psychophysiology. 2004;41(4):521–30.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 293.

    Thayer JF, Sternberg E. Beyond Heart Rate Variability. Ann N Y Acad Sci. 2006;1088(1):361–72.

    CAS 
    PubMed 

    Google Scholar
     

  • 294.

    Jankord R, Herman JP. Limbic regulation of hypothalamo-pituitary-adrenocortical function during acute and chronic stress. Ann N Y Acad Sci. 2008;1148:64–73.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 295.

    Figueiredo HF, Bodie BL, Tauchi M, Dolgas CM, Herman JP. Stress integration after acute and chronic predator stress: differential activation of central stress circuitry and sensitization of the hypothalamo-pituitary-adrenocortical axis. Endocrinology. 2003;144(12):5249–58.

    CAS 
    PubMed 

    Google Scholar
     

  • 296.

    Figueiredo HF, Bruestle A, Bodie B, Dolgas CM, Herman JP. The medial prefrontal cortex differentially regulates stress-induced c-fos expression in the forebrain depending on type of stressor. Eur J Neurosci. 2003;18(8):2357–64.

    PubMed 

    Google Scholar
     

  • 297.

    Diorio D, Viau V, Meaney MJ. The role of the medial prefrontal cortex (cingulate gyrus) in the regulation of hypothalamic-pituitary-adrenal responses to stress. J Neurosci. 1993;13(9):3839–47.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 298.

    Sullivan RM, Gratton A. Lateralized Effects of Medial Prefrontal Cortex Lesions on Neuroendocrine and Autonomic Stress Responses in Rats. J Neurosci. 1999;19(7):2834.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 299.

    Ahima RS, Harlan RE. Charting of type II glucocorticoid receptor-like immunoreactivity in the rat central nervous system. Neuroscience. 1990;39(3):579–604.

    CAS 
    PubMed 

    Google Scholar
     

  • 300.

    Akana SF, Chu A, Soriano L, Dallman MF. Corticosterone exerts site-specific and state-dependent effects in prefrontal cortex and amygdala on regulation of adrenocorticotropic hormone, insulin and fat depots. J Neuroendocrinol. 2001;13(7):625–37.

    CAS 
    PubMed 

    Google Scholar
     

  • 301.

    Herman JP, Cullinan WE. Neurocircuitry of stress: central control of the hypothalamo–pituitary–adrenocortical axis. Trends Neurosci. 1997;20(2):78–84.

    CAS 
    PubMed 

    Google Scholar
     

  • 302.

    Jacobson L, Sapolsky R. The role of the hippocampus in feedback regulation of the hypothalamic-pituitary-adrenocortical axis. Endocr Rev. 1991;12(2):118–34.

    CAS 
    PubMed 

    Google Scholar
     

  • 303.

    Dunn JD, Orr SE. Differential plasma corticosterone responses to hippocampal stimulation. Exp Brain Res. 1984;54(1):1–6.

    CAS 
    PubMed 

    Google Scholar
     

  • 304.

    Rubin RT, Mandell AJ, Crandall PH. Corticosteroid responses to limbic stimulation in man: localization of stimulus sites. Science. 1966;153(3737):767–8.

    CAS 
    PubMed 

    Google Scholar
     

  • 305.

    Fendler K, Karmos G, Telegdy G. The effect of hippocampal lesion on pituitary-adrenal function. Acta Physiol Acad Sci Hung. 1961;20:293–7.

    CAS 
    PubMed 

    Google Scholar
     

  • 306.

    Knigge KM. Adrenocortical response to stress in rats with lesions in hippocampus and amygdala. Proc Soc Exp Biol Med. 1961;108:18–21.

    CAS 
    PubMed 

    Google Scholar
     

  • 307.

    Knigge KM, Hays M. Evidence of Inhibitive Role of Hippocampus in Neural Regulation of ACTH Release. Proc Soc Exp Biol Med. 1963;114:67–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 308.

    Sapolsky RM, Krey LC, McEwen BS. Glucocorticoid-sensitive hippocampal neurons are involved in terminating the adrenocortical stress response. Proc Natl Acad Sci U S A. 1984;81(19):6174–7.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 309.

    Herman JP, Cullinan WE, Morano MI, Akil H, Watson SJ. Contribution of the ventral subiculum to inhibitory regulation of the hypothalamo-pituitary-adrenocortical axis. J Neuroendocrinol. 1995;7(6):475–82.

    CAS 
    PubMed 

    Google Scholar
     

  • 310.

    Feldman S, Weidenfeld J. The dorsal hippocampus modifies the negative feedback effect of glucocorticoids on the adrenocortical and median eminence CRF-41 responses to photic stimulation. Brain Res. 1993;614(1):227–32.

    CAS 
    PubMed 

    Google Scholar
     

  • 311.

    Marrie RA, Walld R, Bolton JM, Sareen J, Walker JR, Patten SB, et al. Physical comorbidities increase the risk of psychiatric comorbidity in immune-mediated inflammatory disease. Gen Hosp Psychiatry. 2018;51:71–8.

    PubMed 

    Google Scholar
     

  • 312.

    Sun Y, Li L, Xie R, Wang B, Jiang K, Cao H. Stress Triggers Flare of Inflammatory Bowel Disease in Children and Adults. Frontiers in Pediatrics. 2019;7(432).

  • 313.

    Walker JR, Ediger JP, Graff LA, Greenfeld JM, Clara I, Lix L, et al. The Manitoba IBD Cohort Study: A Population-Based Study of the Prevalence of Lifetime and 12-Month Anxiety and Mood Disorders. Official journal of the American College of Gastroenterology | ACG. 2008;103(8).

  • 314.

    Bernstein CN, Singh S, Graff LA, Walker JR, Miller N, Cheang M. A Prospective Population-Based Study of Triggers of Symptomatic Flares in IBD. Official journal of the American College of Gastroenterology | ACG. 2010;105(9).

  • 315.

    Larauche M, Kiank C, Tache Y. Corticotropin releasing factor signaling in colon and ileum: regulation by stress and pathophysiological implications. J Physiol Pharmacol. 2009;60 Suppl 7(Suppl 7):33–46.

  • 316.

    Tache Y, Larauche M, Yuan P-Q, Million M. Brain and Gut CRF Signaling: Biological Actions and Role in the Gastrointestinal Tract. Curr Mol Pharmacol. 2018;11(1):51–71.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 317.

    Hill LT, Kidson SH, Michell WL. Corticotropin-releasing factor: A possible key to gut dysfunction in the critically ill. Nutrition. 2013;29(7):948–52.

    CAS 
    PubMed 

    Google Scholar
     

  • 318.

    Söderholm JD, Yang PC, Ceponis P, Vohra A, Riddell R, Sherman PM, et al. Chronic stress induces mast cell–dependent bacterial adherence and initiates mucosal inflammation in rat intestine. Gastroenterology. 2002;123(4):1099–108.

    PubMed 

    Google Scholar
     

  • 319.

    Zheng PY, Feng BS, Oluwole C, Struiksma S, Chen X, Li P, et al. Psychological stress induces eosinophils to produce corticotrophin releasing hormone in the intestine. Gut. 2009;58(11):1473.

    CAS 
    PubMed 

    Google Scholar
     

  • 320.

    Amsterdam A, Tajima K, Sasson R. Cell-specific regulation of apoptosis by glucocorticoids: implication to their anti-inflammatory action. Biochem Pharmacol. 2002;64(5–6):843–50.

    CAS 
    PubMed 

    Google Scholar
     

  • 321.

    Reichlin S. Neuroendocrine-immune interactions. N Engl J Med. 1993;329(17):1246–53.

    CAS 
    PubMed 

    Google Scholar
     

  • 322.

    Franchimont D, Kino T, Galon J, Meduri GU, Chrousos G. Glucocorticoids and inflammation revisited: the state of the art. NIH clinical staff conference Neuroimmunomodulation. 2002;10(5):247–60.

    PubMed 

    Google Scholar
     

  • 323.

    Lee A, De Mei C, Fereira M, Marotta R, Yoon HY, Kim K, et al. Dexamethasone-loaded Polymeric Nanoconstructs for Monitoring and Treating Inflammatory Bowel Disease. Theranostics. 2017;7(15):3653–66.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 324.

    Busillo JM, Azzam KM, Cidlowski JA. Glucocorticoids Sensitize the Innate Immune System through Regulation of the NLRP3 Inflammasome. J Biol Chem. 2011;286(44):38703–13.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 325.

    Chinenov Y, Rogatsky I. Glucocorticoids and the innate immune system: Crosstalk with the Toll-like receptor signaling network. Mol Cell Endocrinol. 2007;275(1):30–42.

    CAS 
    PubMed 

    Google Scholar
     

  • 326.

    Ding Y, Gao Z-G, Jacobson KA, Suffredini AF. Dexamethasone Enhances ATP-Induced Inflammatory Responses in Endothelial Cells. J Pharmacol Exp Ther. 2010;335(3):693.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 327.

    Yu IT, Lee S-H, Lee Y-S, Son H. Differential effects of corticosterone and dexamethasone on hippocampal neurogenesis in vitro. Biochem Biophys Res Commun. 2004;317(2):484–90.

    CAS 
    PubMed 

    Google Scholar
     

  • 328.

    Agasse F, Mendez-David I, Christaller W, Carpentier R, Braz BY, David DJ, et al. Chronic Corticosterone Elevation Suppresses Adult Hippocampal Neurogenesis by Hyperphosphorylating Huntingtin. Cell Reports. 2020;32(1).

  • 329.

    Rubin RT. Adrenal Cortical Activity Changes in Manic-Depressive Illness: Influence on Intermediary Metabolism of Tryptophan. Arch Gen Psychiatry. 1967;17(6):671–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 330.

    Tafet GE, Toister-Achituv M, Shinitzky M. Enhancement of serotonin uptake by cortisol: a possible link between stress and depression. Cogn Affect Behav Neurosci. 2001;1(1):96–104.

    CAS 
    PubMed 

    Google Scholar
     

  • 331.

    Tafet GE, Idoyaga-Vargas VP, Abulafia DP, Calandria JM, Roffman SS, Chiovetta A, et al. Correlation between cortisol level and serotonin uptake in patients with chronic stress and depression. Cogn Affect Behav Neurosci. 2001;1(4):388–93.

    CAS 
    PubMed 

    Google Scholar
     

  • 332.

    Zheng G, Victor Fon G, Meixner W, Creekmore A, Zong Y, M KD, et al. Chronic stress and intestinal barrier dysfunction: Glucocorticoid receptor and transcription repressor HES1 regulate tight junction protein Claudin-1 promoter. Sci Rep. 2017;7(1):4502.

  • 333.

    Petrosus E, Silva EB, Lay D Jr, Eicher SD. Effects of orally administered cortisol and norepinephrine on weanling piglet gut microbial populations and Salmonella passage. J Anim Sci. 2018;96(11):4543–51.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 334.

    Breit S, Kupferberg A, Rogler G, Hasler G. Vagus Nerve as Modulator of the Brain–Gut Axis in Psychiatric and Inflammatory Disorders. Frontiers in Psychiatry. 2018;9(44).

  • 335.

    Zhao L, Xiong Q, Stary CM, Mahgoub OK, Ye Y, Gu L, et al. Bidirectional gut-brain-microbiota axis as a potential link between inflammatory bowel disease and ischemic stroke. J Neuroinflammation. 2018;15(1):339.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 336.

    Berthoud H-R, Neuhuber WL. Functional and chemical anatomy of the afferent vagal system. Auton Neurosci. 2000;85(1):1–17.

    CAS 
    PubMed 

    Google Scholar
     

  • 337.

    Bonaz B, Sinniger V, Pellissier S. The Vagus Nerve in the Neuro-Immune Axis: Implications in the Pathology of the Gastrointestinal Tract. Frontiers in immunology. 2017;8:1452-.

  • 338.

    Lindgren S, Stewenius J, Sjölund K, Lilja B, Sundkvist G. Autonomic vagal nerve dysfunction in patients with ulcerative colitis. Scand J Gastroenterol. 1993;28(7):638–42.

    CAS 
    PubMed 

    Google Scholar
     

  • 339.

    Meregnani J, Clarençon D, Vivier M, Peinnequin A, Mouret C, Sinniger V, et al. Anti-inflammatory effect of vagus nerve stimulation in a rat model of inflammatory bowel disease. Auton Neurosci. 2011;160(1–2):82–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 340.

    Sun P, Zhou K, Wang S, Li P, Chen S, Lin G, et al. Involvement of MAPK/NF-κB Signaling in the Activation of the Cholinergic Anti-Inflammatory Pathway in Experimental Colitis by Chronic Vagus Nerve Stimulation. PLOS ONE. 2013;8(8):e69424.

  • 341.

    Sinniger V, Pellissier S, Fauvelle F, Trocmé C, Hoffmann D, Vercueil L, et al. A 12-month pilot study outcomes of vagus nerve stimulation in Crohn’s disease. Neurogastroenterology & Motility. 2020;32(10):e13911.

  • 342.

    Colzato LS, Jongkees BJ, de Wit M, van der Molen MJW, Steenbergen L. Variable heart rate and a flexible mind: Higher resting-state heart rate variability predicts better task-switching. Cogn Affect Behav Neurosci. 2018;18(4):730–8.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 343.

    Bonaz B, Sinniger V, Pellissier S. Vagal tone: effects on sensitivity, motility, and inflammation. Neurogastroenterol Motil. 2016;28(4):455–62.

    CAS 
    PubMed 

    Google Scholar
     

  • 344.

    Liu W-Z, Zhang W-H, Zheng Z-H, Zou J-X, Liu X-X, Huang S-H, et al. Identification of a prefrontal cortex-to-amygdala pathway for chronic stress-induced anxiety. Nat Commun. 2020;11(1):2221.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 345.

    Ruit KG, Neafsey EJ. Hippocampal input to a “visceral motor” corticobulbar pathway: an anatomical and electrophysiological study in the rat. Exp Brain Res. 1990;82(3):606–16.

    CAS 
    PubMed 

    Google Scholar
     

  • 346.

    Blessing EM, Beissner F, Schumann A, Brünner F, Bär KJ. A data-driven approach to mapping cortical and subcortical intrinsic functional connectivity along the longitudinal hippocampal axis. Hum Brain Mapp. 2016;37(2):462–76.

    PubMed 

    Google Scholar
     

  • 347.

    Tannenholz L, Jimenez JC, Kheirbek MA. Local and regional heterogeneity underlying hippocampal modulation of cognition and mood. Front Behav Neurosci. 2014;8:147.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 348.

    Scott BG, Weems CF. Resting vagal tone and vagal response to stress: associations with anxiety, aggression, and perceived anxiety control among youths. Psychophysiology. 2014;51(8):718–27.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 349.

    Martelli D, McKinley MJ, McAllen RM. The cholinergic anti-inflammatory pathway: a critical review. Auton Neurosci. 2014;182:65–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 350.

    Wang H, Liao H, Ochani M, Justiniani M, Lin X, Yang L, et al. Cholinergic agonists inhibit HMGB1 release and improve survival in experimental sepsis. Nat Med. 2004;10(11):1216–21.

    CAS 
    PubMed 

    Google Scholar
     

  • 351.

    Rosas-Ballina M, Olofsson PS, Ochani M, Valdés-Ferrer SI, Levine YA, Reardon C, et al. Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science. 2011;334(6052):98–101.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 352.

    Cailotto C, Gomez-Pinilla PJ, Costes LM, van der Vliet J, Di Giovangiulio M, Némethova A, et al. Neuro-anatomical evidence indicating indirect modulation of macrophages by vagal efferents in the intestine but not in the spleen. PLoS One. 2014;9(1):e87785.

  • 353.

    Henry CJ, Huang Y, Wynne A, Hanke M, Himler J, Bailey MT, et al. Minocycline attenuates lipopolysaccharide (LPS)-induced neuroinflammation, sickness behavior, and anhedonia. J Neuroinflammation. 2008;5(1):15.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 354.

    Zheng LS, Kaneko N, Sawamoto K. Minocycline treatment ameliorates interferon-alpha- induced neurogenic defects and depression-like behaviors in mice. Front Cell Neurosci. 2015;9:5.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 355.

    Kobayashi K, Imagama S, Ohgomori T, Hirano K, Uchimura K, Sakamoto K, et al. Minocycline selectively inhibits M1 polarization of microglia. Cell Death & Disease. 2013;4(3):e525-e.

  • 356.

    Garrido-Mesa N, Camuesco D, Arribas B, Comalada M, Bailón E, Cueto-Sola M, et al. The intestinal anti-inflammatory effect of minocycline in experimental colitis involves both its immunomodulatory and antimicrobial properties. Pharmacol Res. 2011;63(4):308–19.

    CAS 
    PubMed 

    Google Scholar
     

  • 357.

    Lichtenstein GR, Bala M, Han C, DeWoody K, Schaible T. Infliximab Improves Quality of Life in Patients with Crohn’s Disease. Inflamm Bowel Dis. 2002;8(4):237–43.

    PubMed 

    Google Scholar
     

  • 358.

    Her M, Kavanaugh A. Alterations in immune function with biologic therapies for autoimmune disease. Journal of Allergy and Clinical Immunology. 2016;137(1):19–27.

    CAS 

    Google Scholar
     

  • 359.

    Zhang J-q, Wu X-h, Feng Y, Xie X-f, Fan Y-h, Yan S, et al. Salvianolic acid B ameliorates depressive-like behaviors in chronic mild stress-treated mice: involvement of the neuroinflammatory pathway. Acta Pharmacologica Sinica. 2016;37(9):1141–53.

  • 360.

    Jiang P, Guo Y, Dang R, Yang M, Liao D, Li H, et al. Salvianolic acid B protects against lipopolysaccharide-induced behavioral deficits and neuroinflammatory response: involvement of autophagy and NLRP3 inflammasome. J Neuroinflammation. 2017;14(1):239.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 361.

    Feng PP, Fang XS, Zhao SH, Fu JY, Zhang HT, Yi YL, et al. Salvianolic acid B decreases interleukin-1β-induced colitis recurrence in mice. Chin Med J (Engl). 2020;133(12):1436–44.


    Google Scholar
     

  • 362.

    Ohsawa I, Ishikawa M, Takahashi K, Watanabe M, Nishimaki K, Yamagata K, et al. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat Med. 2007;13(6):688–94.

    CAS 
    PubMed 

    Google Scholar
     

  • 363.

    Ostojic SM. Targeting molecular hydrogen to mitochondria: barriers and gateways. Pharmacol Res. 2015;94:51–3.

    CAS 
    PubMed 

    Google Scholar
     

  • 364.

    Shen NY, Bi JB, Zhang JY, Zhang SM, Gu JX, Qu K, et al. Hydrogen-rich water protects against inflammatory bowel disease in mice by inhibiting endoplasmic reticulum stress and promoting heme oxygenase-1 expression. World J Gastroenterol. 2017;23(8):1375–86.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 365.

    Zhang Y, Su W-J, Chen Y, Wu T-Y, Gong H, Shen X-L, et al. Effects of hydrogen-rich water on depressive-like behavior in mice. Sci Rep. 2016;6(1):23742.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 366.

    Ooi SL, Green R, Pak SC. N-Acetylcysteine for the Treatment of Psychiatric Disorders: A Review of Current Evidence. Biomed Res Int. 2018;2018:2469486.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 367.

    Sido B, Hack V, Hochlehnert A, Lipps H, Herfarth C, Dröge W. Impairment of intestinal glutathione synthesis in patients with inflammatory bowel disease. Gut. 1998;42(4):485–92.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 368.

    Kimura H, Miura S, Shigematsu T, Ohkubo N, Tsuzuki Y, Kurose I, et al. Increased Nitric Oxide Production and Inducible Nitric Oxide Synthase Activity in Colonic Mucosa of Patients with Active Ulcerative Colitis and Crohn’s Disease. Dig Dis Sci. 1997;42(5):1047–54.

    CAS 
    PubMed 

    Google Scholar
     

  • 369.

    Menchén LA, Colón AL, Moro MaA, Leza JC, Lizasoain I, Menchén P, et al. N-(3-(Aminomethyl)benzyl)acetamidine, an inducible nitric oxide synthase inhibitor, decreases colonic inflammation induced by trinitrobenzene sulphonic acid in rats. Life Sciences. 2001;69(4):479–91.

  • 370.

    Choi S-H, Aid S, Bosetti F. The distinct roles of cyclooxygenase-1 and -2 in neuroinflammation: implications for translational research. Trends Pharmacol Sci. 2009;30(4):174–81.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 371.

    Abbasi S-H, Hosseini F, Modabbernia A, Ashrafi M, Akhondzadeh S. Effect of celecoxib add-on treatment on symptoms and serum IL-6 concentrations in patients with major depressive disorder: Randomized double-blind placebo-controlled study. J Affect Disord. 2012;141(2):308–14.

    CAS 
    PubMed 

    Google Scholar
     

  • 372.

    Müller N, Schwarz MJ, Dehning S, Douhe A, Cerovecki A, Goldstein-Müller B, et al. The cyclooxygenase-2 inhibitor celecoxib has therapeutic effects in major depression: results of a double-blind, randomized, placebo controlled, add-on pilot study to reboxetine. Mol Psychiatry. 2006;11(7):680–4.

    PubMed 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)