• 1.

    Ye F, Li X, Li L, Lyu L, Yuan J, Chen J. The role of Nrf2 in protection against Pb-induced oxidative stress and apoptosis in SH-SY5Y cells. Food Chem Toxicol. 2015;86:191–201.

    CAS 
    PubMed 

    Google Scholar
     

  • 2.

    Mathee A, Röllin H, von Schirnding Y, Levin J, Naik I. Reductions in blood lead levels among school children following the introduction of unleaded petrol in South Africa. Env Res. 2006;100:319–22.

    CAS 

    Google Scholar
     

  • 3.

    Debnath B, Singh WS, Manna K. Sources and toxicological effects of lead on human health. Indian J Med Spec. 2019;10:66–71.


    Google Scholar
     

  • 4.

    Giel-Pietraszuk M, Hybza K, Chełchowska M, Barciszewski J. Mechanisms of lead toxicity. Adv Cell Biol. 2012;39:17–248.


    Google Scholar
     

  • 5.

    Amadi CN, Igweze ZN, Orisakwe OE. Heavy metals in miscarriages and stillbirths in developing nations. Middle East Fertil Soc J. 2017;22:91–100.


    Google Scholar
     

  • 6.

    Lamidi IY, Akefe IO. Mitigate effects of antioxidants in Lead toxicity. Clin Pharmacol Toxi J. 2017;1:3.


    Google Scholar
     

  • 7.

    Ahmed MB, Ahmed MI, Meki AR, Abdraboh N. Neurotoxic effect of lead on rats: relationship to apoptosis. Int J Health Sci Qassim University. 2013;7:192–9.


    Google Scholar
     

  • 8.

    Flora G, Gupta D, Tiwari A. Toxicity of lead: a review with recent updates. Interdiscip Toxicol. 2012;5:47–58.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 9.

    Lyn P. Lead toxicity, a review of the literature. Part I: exposure, evaluation, and treatment. Altern Med Rev. 2006;11:2–22.


    Google Scholar
     

  • 10.

    Jankowska-Kulawy A, Gul-Hinc S, Bielarczy H, Suszkiw JB, Pawełczyk T, Dyś A, et al. Effects of lead on cholinergic SN56 neuroblastoma cells. Acta Neurobiol Exp. 2008;68:453–62.


    Google Scholar
     

  • 11.

    Lane RM, Potkin SG, Enz A. Targeting acetylcholinesterase and butyrylcholinesterase in dementia. Int J Neuropsychopharmacol. 2006;9:101–24.

    CAS 
    PubMed 

    Google Scholar
     

  • 12.

    Chibowska K, Baranowska-Bosiacka I, Falkowska A, Gutowska I, Goschorska M, Chlubek D. Effect of Lead (Pb) on inflammatory processes in the brain. Int J Mol Sci. 2016;17:2140.

    PubMed Central 

    Google Scholar
     

  • 13.

    Dribben WH, Creeley CEN. Low-level lead exposure triggers neuronal apoptosis in the developing mouse brain. Neurotoxicol Teratol. 2011;33:473–80.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 14.

    Sharifi AM, Mousavi SH, Jorjani M. Effect of chronic Lead exposure on pro-apoptotic Bax and anti-apoptotic Bcl-2 protein expression in rat Hippocampus in vivo. Cell Mol Neurobiol. 2010;30:769–74.

    CAS 
    PubMed 

    Google Scholar
     

  • 15.

    Lopes ACA, Peixe TS, Mesas AE, Paoliello MMB. Lead exposure and oxidative stress: a systematic review. Rev Env Contamination Toxicol. 2016;236:196–234.


    Google Scholar
     

  • 16.

    Sidhu P, Nehru B. Lead intoxication: histological and oxidative damage in rat cerebrum and cerebellum. J Trace Elements Exp Med. 2004;17:45–53.

    CAS 

    Google Scholar
     

  • 17.

    Reckziegel P, Dias VT, Benvegnú D, Boufleur N, Barcelos RCS, Segat HJ, et al. Locomotor damage and brain oxidative stress induced by lead exposures are attenuated by gallic acid treatment. Toxicol Letters. 2011;203:74–81.

    CAS 

    Google Scholar
     

  • 18.

    Su P, Zhang J, Wang S, Aschner M, Cao Z, Zhao F, et al. Geinstein alleviates lead-induced neurotoxicity in vitro and in vivo: involvement of multiple signalling pathways. Neurotoxicol. 2016;53:153–64.

    CAS 

    Google Scholar
     

  • 19.

    Bhebhe M, Chipurura B, Muchuweti M. (). Determination and comparison of phenolic compound content and antioxidant activity of selected local Zimbabwean herbal teas with exotic Aspalathus linearis. S African J Bot. 2015;100:213–8.

    CAS 

    Google Scholar
     

  • 20.

    Katerere DR, Graziani G, Thembo KM, Nyazema NZ, Ritieni A. Antioxidant activity of some African medicinal and dietary leafy African vegetables. African J Biotechnol. 2012;11(17):4103–8.

    CAS 

    Google Scholar
     

  • 21.

    Shikanga EA, Combrinck S, Regnier T. South African Lippia herbal infusions: Total phenolic content, antioxidant and antibacterial activities. S Afr J Bot. 2010;76:567–71.


    Google Scholar
     

  • 22.

    York T, De Wet H, Van Vuuren SF. Plants used for treating respiratory infections in rural Maputaland, KwaZulu-Natal, S Africa. J Ethnopharmacol. 2011;135:696–710.

    CAS 
    PubMed 

    Google Scholar
     

  • 23.

    Maroyi A. Lippia javanica (Burm. F.) Spreng.: traditional and commercial uses and phytochemical and pharmacological significance in the african and indian subcontinent. Evid based Compl Alter Med. 2017;2017:6746071.


    Google Scholar
     

  • 24.

    Suleman Z. Comparing the antioxidant properties of Lippia javanica with Aspalathus linearis (rooibos), BSc III research assignment (Unpublished); 2015.


    Google Scholar
     

  • 25.

    von Gadouw A, Joubert E, Hansmann CF. Comparison of the antioxidant activity of rooibos tea (Aspalathus linearis) with green, oolong and black tea. Food Chem. 1997;60:73–7.


    Google Scholar
     

  • 26.

    South African National Standard: the care and use of animals for scientific purposes. 2008. (SANS10386: 2008). Published by SABS Standards Division, Pretoria South Africa.

  • 27.

    Nehru B, Sidhu P. Behaviour and neurotoxic consequences of lead on rat brain followed by recovery. Biol Trace Element Res. 2001;84:113–21.

    CAS 

    Google Scholar
     

  • 28.

    CCOHS. Chemicals and materials fact sheet. Canadian Centre for. Occup Health Saf. 2018; Accessed 18th of April 2020. https://www.ccohs.ca/oshanswers/chemicals/ld50.html.

  • 29.

    Joubert E, Gelderblom WCA, Louw A, de Beer D. South African herbal teas: Aspalathus linearis, Cyclopia spp. and Athrixia phylicoides – a review. J Ethnopharmacol. 2008;119:376–412.

    CAS 
    PubMed 

    Google Scholar
     

  • 30.

    Arnao MB, Cano A, Acosta M. The hydrophilic and lipophilic contribution to total antioxidant capacity. Food Chem. 2001;73:239–44.

    CAS 

    Google Scholar
     

  • 31.

    Owens CWI, Belcher RV. A colorimetric micro-method for the determination of glutathione. Biochem J. 1965;94:705.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 32.

    Mallick M, Mandal S, Barik B, Bhattacharya A, Ghosh D. Protection of testicular dysfunctions by MTEC, a formulated herbal drug, in streptozotocin induced diabetic rat. Biol Pharm Bull. 2007;30:84–90.

    CAS 
    PubMed 

    Google Scholar
     

  • 33.

    Ellman GL, Courtney KD, Andres V Jr, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961;7:88–95.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 34.

    Tiya S, Sewani-Rusike CR, Shauli M. Effects of treatment with Hypoxis hemerocallidea extract on sexual behaviour and reproductive parameters in male rats. Andrologia. 2017;49:e12742.


    Google Scholar
     

  • 35.

    Mfengu MOM, Shauli M, Engwa GA, Musarurwa HT, Sewani-Rusike CR. Lippia javanica (Zumbani) herbal tea infusion attenuates allergic airway inflammation via inhibition of Th2 cell activation and suppression of oxidative stress. BMC Complement Med Ther. 2021;21(1):192.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 36.

    Rautenbach M, Vlok NM, Eyéghé-Bickong HA, van der Merwe MJ, Stander MA. An electrospray ionization mass spectrometry study on the “in Vacuo” hetero-oligomers formed by the antimicrobial peptides, surfactin and gramicidin. S J Am Soc Mass Spectrometry. 2017;28(8):1623–37.

    CAS 

    Google Scholar
     

  • 37.

    Serlin Y, Shelef L, Knyazer B, Friedman A. Anatomy and physiology of the blood-brain barrier. Seminars Cell Developmental Biol. 2015;38:2–6.


    Google Scholar
     

  • 38.

    Su P, Zhang J, Wang S, Aschner M, Cao Z, Zhao F, et al. Geinstein alleviates lead-induced neurotoxicity in vitro and in vivo: involvement of multiple signalling pathways. Neurotoxicol. 2016;53:153–64.

    CAS 

    Google Scholar
     

  • 39.

    Shikanga EA, Combrinck S, Regnier T. South African Lippia herbal infusions: Total phenolic content, antioxidant and antibacterial activities. South Afr J Bot. 2010;76:567–71.


    Google Scholar
     

  • 40.

    Elaga MK, Daughtry LK, Jones AC, Yallapragada PR, Rajanna S, Rajanna B. Attenuation of lead-induced oxidative stress in rat brain, liver, kidney and blood of male Wistar rats by Moringa oleifera seed powder. J Env Pathol Toxicol Oncol. 2014;33:323–37.


    Google Scholar
     

  • 41.

    Ohta Y, Yashiro k, Ohashi k, Imai Y. Disruption of non-enzymatic antioxidant defense systems in the brain of rats with water-immersion restraint stress. J Clin Biochem Nut. 2012;51:136–42.

    CAS 

    Google Scholar
     

  • 42.

    Faria A, Mateus N, Calhau C. Flavonoid transport across the blood-brain barrier: implication for their direct neuroprotective actions. Nut Aging. 2012;1:89–97.


    Google Scholar
     

  • 43.

    Khalaf AA, Moselhy WA, Abdel-Hamed MI. The protective effect of green tea extract on lead induced oxidative and DNA damage on rat brain. Neurotoxicol. 2012;33:280–9.

    CAS 

    Google Scholar
     

  • 44.

    Nam T. Lipid peroxidation and its toxicological implications. Official J Kor Soc Toxicol. 2011;27:1–6.


    Google Scholar
     

  • 45.

    Prasanthi RPJ, Devi CB, Basha DC, Reddy NS, Reddy GR. Calcium and zinc supplementation protects lead (Pb)-induced perturbations in antioxidant enzymes and lipid peroxidation in developing mouse brain. Int J Developmental Neurosci. 2010;28:161–7.

    CAS 

    Google Scholar
     

  • 46.

    Abubakar K, Mailafiya MM, Danmaigoro A, Chiroma SM, Rahim EBA, Zakaria MZAB. Curcumin attenuates Lead-induced cerebellar toxicity in rats via chelating activity and inhibition of oxidative stress. Biomolecules. 2019;9:453.

    PubMed Central 

    Google Scholar
     

  • 47.

    Oprica M, Eriksson C, Schulzberg M. Inflammatory mechanisms associated with brain damage induced by kainic acid with special reference to the intereukin-1 system. J Cell Mol Med. 2003;7:127–40.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 48.

    Liu J-T, Chen B-Y, Zhang J-Q, Kuang F, Chen L-W. Lead exposure induced microgliosis and astrogliosis in hippocampus of young mice potentially by triggering TLR4–MyD88–NFκB signaling cascades. Toxicol Letters. 2015;239:97–107.

    CAS 

    Google Scholar
     

  • 49.

    Farag MR, Alagawany M, Abd El-Hack ME, El-Sayed SAA, Ahmed SYA, Samak DH. Yucca schidigera extract modulates the lead-induced oxidative damage, nephropathy and altered inflammatory response and glucose homeostasis in Japanese quails. Ecotoxicol Env Safety. 2018;156:311–21.

    CAS 

    Google Scholar
     

  • 50.

    Niu Y, Zhang R, Cheng Y, Sun X, Tian J. Effect of lead acetate on the apoptosis and the expression of and bax genes in rat brain cells. Chin J Prev Med. 2002;36:30–3.

    CAS 

    Google Scholar
     

  • 51.

    Phyu MP, Tangpong J. Protective effect of Thunbergia laurifolia (Linn.) on Lead induced acetylcholinesterase dysfunction and cognitive impairment in mice. Biomed Res Int. 2013;2013:186098. https://doi.org/10.1155/2013/186098.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 52.

    El-Masry TA, Emara AM, El-Shitany NA. Possible protective effect of propolis against lead induced neurotoxicity in animal model. J Evol Biol Res. 2011;3:4–11.


    Google Scholar
     

  • 53.

    Kubo K, Murabayashi C, Kotachi M, Suzuki A, Mori D, Sato Y, et al. Tooth loss early in life suppresses neurogenesis and synaptophysin expression in the hippocampus and impairs learning in mice. Arch Oral Biol. 2016;74:21–7.

    PubMed 

    Google Scholar
     

  • 54.

    Greenbaum L, Ravona-Springer R, Lubitz I, Schmeidler J, Cooper I, Sano M, et al. Potential contribution of the Alzheimer’s disease risk locus BIN1 to episodic memory performance in cognitively normal type 2 diabetes elderly. Eur Neuropsychopharmacol. 2016;26:787–95.

    CAS 
    PubMed 

    Google Scholar
     

  • 55.

    Shikanga EA, Combrinck S, Regnier T. South African Lippia herbal infusions: Total phenolic content, antioxidant and antibacterial activities. S Afr J Bot. 2010;76(3):567–71.


    Google Scholar
     

  • 56.

    Asowata-Ayodele AM, Otunola GA, Afolayan AJ. Assessment of the polyphenolic content, free radical scavenging, anti-inflammatory, and antimicrobial activities of acetone and aqueous extracts of Lippia javanica (Burm.F.) spreng. Pharmacog Mag. 2016;3:353–62.


    Google Scholar
     

  • 57.

    Srinivasulu C, Ramgopal M, Ramanjaneyulu G, Anuradha CM, Kumar CS. Syringic acid (SA)–a review of its occurrence, biosynthesis, pharmacological and industrial importance. Biomed Pharmacother. 2018;108:547–57.

    CAS 
    PubMed 

    Google Scholar
     

  • 58.

    Pei K, Ou J, Huang J, Ou S. P-Coumaric acid and its conjugates: dietary sources, pharmacokinetic properties and biological activities. J Sci Food Agriculture. 2016;96(9):2952–62.

    CAS 

    Google Scholar
     

  • 59.

    Pragasam SJ, Venkatesan V, Rasool M. Immunomodulatory and anti-inflammatory effect of p-coumaric acid, a common dietary polyphenol on experimental inflammation in rats. Inflammation. 2013;36(1):169–76.

    CAS 
    PubMed 

    Google Scholar
     

  • 60.

    Paciello F, Di Pino A, Rolesi R, Troiani D, Paludetti G, Grassi C, et al. Anti-oxidant and anti-inflammatory effects of caffeic acid: in vivo evidences in a model of noise-induced hearing loss. Food ChemToxicol. 2020;143:111555.

    CAS 

    Google Scholar
     

  • 61.

    Calixto-Campos C, Carvalho TT, Hohmann MS, Pinho-Ribeiro FA, Fattori V, Manchope MF, et al. Vanillic acid inhibits inflammatory pain by inhibiting neutrophil recruitment, oxidative stress, cytokine production, and NFκB activation in mice. J Natural Products. 2015;78(8):1799–808.

    CAS 

    Google Scholar
     

  • 62.

    Szwajgier D. Anticholinesterase activities of selected polyphenols – a short report. Polish J Food Nutr Sci. 2014;64(1):59–64.

    CAS 

    Google Scholar
     

  • 63.

    Mangmool S, Kunpukpong I, Kitphati W, Anantachoke N. Antioxidant and anticholinesterase activities of extracts and phytochemicals of Syzygium antisepticum leaves. Molecules. 2021;26:3295.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 64.

    Han DH, Jeong JH, Kim JH. Anti-proliferative and apoptosis induction activity of green tea polyphenols on human Promyelocytic leukemia HL-60 cells. Anticancer Res. 2009;29:1417–22.

    CAS 
    PubMed 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)