• Anavi-Goffer S, Baillie G, Irving AJ, Gertsch J, Greig IR, Pertwee RG, et al. Modulation of l-α-lysophosphatidylinositol/GPR55 mitogen-activated protein kinase (MAPK) signaling by cannabinoids. J Biol Chem. 2012;287:91–104. https://doi.org/10.1074/jbc.M111.296020.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Anderson LL, Absalom NL, Abelev SV, Low IK, Doohan PT, Martin LJ, et al. Coadministered cannabidiol and clobazam: preclinical evidence for both pharmacodynamic and pharmacokinetic interactions. Epilepsia. 2019a;60:2224–34. https://doi.org/10.1111/epi.16355.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Anderson LL, Low IK, Banister SD, McGregor IS, Arnold JC. Pharmacokinetics of phytocannabinoid acids and anticonvulsant effect of cannabidiolic acid in a mouse model of Dravet Syndrome. J Nat Prod. 2019b;82:3047–55. https://doi.org/10.1021/acs.jnatprod.9b00600.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Anderson LL, Low IK, McGregor IS, Arnold JC. Interactions between cannabidiol and Δ 9 -tetrahydrocannabinol in modulating seizure susceptibility and survival in a mouse model of Dravet syndrome. Br J Pharmacol. 2020;177:4261–74. https://doi.org/10.1111/bph.15181.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Anderson LL, Ametovski A, Lin Luo J, Everett-Morgan D, McGregor IS, Banister SD, et al. Cannabichromene, related phytocannabinoids, and 5-fluoro-cannabichromene have anticonvulsant properties in a mouse model of Dravet Syndrome. ACS Chem Neurosci. 2021a;12:330–9. https://doi.org/10.1021/acschemneuro.0c00677.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Anderson LL, Heblinski M, Absalom NL, Hawkins NA, Bowen M, Benson MJ, et al. Cannabigerolic acid, a major biosynthetic precursor molecule in cannabis, exhibits divergent effects on seizures in mouse models of epilepsy. Br J Pharmacol bph. 2021b;15661. https://doi.org/10.1111/bph.15661.

  • Bakas T, van Nieuwenhuijzen PS, Devenish SO, McGregor IS, Arnold JC, Chebib M. The direct actions of cannabidiol and 2-arachidonoyl glycerol at GABA A receptors. Pharmacol Res. 2017;119:358–70. https://doi.org/10.1016/j.phrs.2017.02.022.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ballatore C, Huryn DM, Smith AB. Carboxylic acid (Bio)isosteres in drug design. ChemMedChem. 2013;8:385–95. https://doi.org/10.1002/cmdc.201200585.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Benson MJ, Anderson LL, Low IK, Luo JL, Kevin RC, Zhou C, et al. Evaluation of the possible anticonvulsant effect of Δ 9 -tetrahydrocannabinolic acid in murine seizure models. Cannabis Cannabinoid Res Can. 2020, 2020;0073. https://doi.org/10.1089/can.2020.0073.

  • Bladen C, Mirlohi S, Santiago M, Longworth M, Kassiou M, Banister S, et al. Modulation of human T-type calcium channels by synthetic cannabinoid receptor agonists in vitro. Neuropharmacology. 2021;187:108478. https://doi.org/10.1016/j.neuropharm.2021.108478.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Calhoun JD, Hawkins NA, Zachwieja NJ, Kearney JA. Cacna1g is a genetic modifier of epilepsy in a mouse model of Dravet syndrome. Epilepsia. 2017;58:e111–5. https://doi.org/10.1111/epi.13811.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Chen Y, Parker WD, Wang K. The role of T-type calcium channel genes in absence seizures. Front Neurol. 2014;5. https://doi.org/10.3389/fneur.2014.00045.

  • Chiu, P., Olsen, D.M., Borys, H.K., Karler, R., Turkanis, S.A., 1979. The influence of cannabidiol and Δ 9-tetrahydrocannabinol on cobalt epilepsy in rats. Epilepsia 20, 365–375. doi: https://doi.org/10.1111/j.1528-1157.1979.tb04816.x

  • Davis WM, Hatoum NS. Neurobehavioral actions of cannabichromene and interactions with Δ9-tetrahydrocannabinol. Gen Pharmacol. 1983;14:247–52. https://doi.org/10.1016/0306-3623(83)90004-6.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Fellermeier M, Zenk MH. Prenylation of olivetolate by a hemp transferase yields cannabigerolic acid, the precursor of tetrahydrocannabinol. FEBS Lett. 1998;427:283–5. https://doi.org/10.1016/S0014-5793(98)00450-5.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ghose AK, Herbertz T, Hudkins RL, Dorsey BD, Mallamo JP. Knowledge-based, central nervous system (CNS) lead selection and lead optimization for CNS drug discovery. ACS Chem Neurosci. 2012;3:50–68. https://doi.org/10.1021/cn200100h.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ghovanloo M-R, Shuart NG, Mezeyova J, Dean RA, Ruben PC, Goodchild SJ. Inhibitory effects of cannabidiol on voltage-dependent sodium currents. J Biol Chem. 2018;293:16546–58. https://doi.org/10.1074/jbc.RA118.004929.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Gray RA, Whalley BJ. The proposed mechanisms of action of CBD in epilepsy. Epileptic Disord. 2020. https://doi.org/10.1684/epd.2020.1135.

  • Hawkins NA, Anderson LL, Gertler TS, Laux L, George AL, Kearney JA. Screening of conventional anticonvulsants in a genetic mouse model of epilepsy. Ann Clin Transl Neurol. 2017;4:326–39. https://doi.org/10.1002/acn3.413.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Hill AJ, Weston SE, Jones NA, Smith I, Bevan SA, Williamson EM, et al. Δ9-Tetrahydrocannabivarin suppresses in vitro epileptiform and in vivo seizure activity in adult rats. Epilepsia. 2010;51:1522–32. https://doi.org/10.1111/j.1528-1167.2010.02523.x.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hill A, Mercier M, Hill T, Glyn S, Jones N, Yamasaki Y, et al. Cannabidivarin is anticonvulsant in mouse and rat. Br J Pharmacol. 2012;167:1629–42. https://doi.org/10.1111/j.1476-5381.2012.02207.x.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Iannotti FA, Hill CL, Leo A, Alhusaini A, Soubrane C, Mazzarella E, et al. Nonpsychotropic plant cannabinoids, cannabidivarin (CBDV) and cannabidiol (CBD), activate and desensitize transient receptor potential vanilloid 1 (TRPV1) channels in vitro: potential for the treatment of neuronal hyperexcitability. ACS Chem Neurosci. 2014;5:1131–41. https://doi.org/10.1021/cn5000524.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ito S, Ogiwara I, Yamada K, Miyamoto H, Hensch TK, Osawa M, et al. Mouse with Nav1.1 haploinsufficiency, a model for Dravet syndrome, exhibits lowered sociability and learning impairment. Neurobiol Dis. 2013;49:29–40. https://doi.org/10.1016/j.nbd.2012.08.003.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kaplan JS, Stella N, Catterall WA, Westenbroek RE. Cannabidiol attenuates seizures and social deficits in a mouse model of Dravet syndrome. Proc Natl Acad Sci. 2017;114:11229–34. https://doi.org/10.1073/pnas.1711351114.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Karler R, Turkanis SA. Cannabis and epilepsy, in: marihuana biological effects: Elsevier; 1979. p. 619–41. https://doi.org/10.1016/B978-0-08-023759-6.50052-4.

  • Manallack DT. The p K a distribution of drugs: application to drug discovery. Perspect Med Chem. 2007;1:1177391X0700100. https://doi.org/10.1177/1177391X0700100003.

    Article 

    Google Scholar
     

  • Meisler MH, O’Brien JE, Sharkey LM. Sodium channel gene family: epilepsy mutations, gene interactions and modifier effects. J Physiol. 2010;588:1841–8. https://doi.org/10.1113/jphysiol.2010.188482.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Miller AR, Hawkins NA, McCollom CE, Kearney JA. Mapping genetic modifiers of survival in a mouse model of Dravet syndrome. Genes Brain Behav. 2014;13:163–72. https://doi.org/10.1111/gbb.12099.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Pertwee RG, Rock EM, Guenther K, Limebeer CL, Stevenson LA, Haj C, et al. Cannabidiolic acid methyl ester, a stable synthetic analogue of cannabidiolic acid, can produce 5-HT 1A receptor-mediated suppression of nausea and anxiety in rats. Br J Pharmacol. 2018;175:100–12. https://doi.org/10.1111/bph.14073.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Rankovic Z. CNS drug design: balancing physicochemical properties for optimal brain exposure. J Med Chem. 2015a;58:2584–608. https://doi.org/10.1021/jm501535r.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Rankovic Z. Designing CNS drugs for optimal brain exposure, in: blood-brain barrier in drug discovery. Hoboken, NJ: John Wiley & Sons, Inc; 2015b. p. 385–424. https://doi.org/10.1002/9781118788523.ch18.

    Book 

    Google Scholar
     

  • Ross HR, Napier I, Connor M. Inhibition of recombinant human T-type calcium channels by Δ9-tetrahydrocannabinol and cannabidiol. J Biol Chem. 2008;283:16124–34. https://doi.org/10.1074/jbc.M707104200.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Sylantyev S, Jensen TP, Ross RA, Rusakov DA. Cannabinoid- and lysophosphatidylinositol-sensitive receptor GPR55 boosts neurotransmitter release at central synapses. Proc Natl Acad Sci. 2013;110:5193–8. https://doi.org/10.1073/pnas.1211204110.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vilela LR, Lima IV, Kunsch ÉB, Pinto HPP, de Miranda AS, Vieira ÉLM, et al. Anticonvulsant effect of cannabidiol in the pentylenetetrazole model: pharmacological mechanisms, electroencephalographic profile, and brain cytokine levels. Epilepsy Behav. 2017;75:29–35. https://doi.org/10.1016/j.yebeh.2017.07.014.

    Article 
    PubMed 

    Google Scholar
     

  • Yamakawa K. Molecular basis of severe myoclonic epilepsy in infancy. Brain and Development. 2009;31:401–4. https://doi.org/10.1016/j.braindev.2008.11.015.

    Article 
    PubMed 

    Google Scholar
     

  • Yu FH, Mantegazza M, Westenbroek RE, Robbins CA, Kalume F, Burton KA, et al. Reduced sodium current in GABAergic interneurons in a mouse model of severe myoclonic epilepsy in infancy. Nat Neurosci. 2006;9:1142–9. https://doi.org/10.1038/nn1754.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)