Xia, Z., Wang, X., Sun, X., Wang, Q.: A secure and dynamic multi-keyword ranked search scheme over encrypted cloud data. IEEE Trans. Parallel Distrib. Syst. 27(2), 340–352 (2015)
Yuan, G., Lu, S., Wei, Z.: A new trust-region method with line search for solving symmetric nonlinear equations. Int. J. Comput. Math. 88(10), 2109–2123 (2011)
Sulaiman, I.M., Supian, S., Mamat, M.: New Class of Hybrid Conjugate Gradient Coefficients with Guaranteed Descent and Efficient Line Search. In IOP Conference Series: Materials Science and Engineering, vol. 621, p. 012021. IOP Publishing, Bristol (2019)
Hager, W.W., Zhang, H.: A survey of nonlinear conjugate gradient methods. Pac. J. Optim. 2(1), 35–58 (2006)
Stiefel, E.: Methods of conjugate gradients for solving linear systems. J. Res. Natl. Bur. Stand. 49, 409–435 (1952)
Fletcher, R., Powell, M.J.D.: A rapidly convergent descent method for minimization. Comput. J. 6(2), 163–168 (1963)
Polak, E., Ribiere, G.: Note sur la convergence de méthodes de directions conjuguées. ESAIM: Math. Model. Numer. Anal. 3(R1), 35–43 (1969)
Polyak, B.T.: The conjugate gradient method in extremal problems. USSR Comput. Math. Math. Phys. 9(4), 94–112 (1969)
Liu, Y., Storey, C.: Efficient generalized conjugate gradient algorithms, part 1: theory. J. Optim. Theory Appl. 69(1), 129–137 (1991)
Dai, Y., Han, J., Liu, G., Sun, D., Yin, H., Yuan, Y.X.: Convergence properties of nonlinear conjugate gradient methods. SIAM J. Optim. 10(2), 345–358 (2000)
Yuan, G., Wei, Z., Lu, X.: Global convergence of BFGS and PRP methods under a modified weak Wolfe–Powell line search. Appl. Math. Model. 47, 811–825 (2017)
Rivaie, M., Mamat, M., June, L.W., Mohd, I.: A new class of nonlinear conjugate gradient coefficients with global convergence properties. Appl. Math. Comput. 218(22), 11323–11332 (2012)
Dai, Z.: Comments on a new class of nonlinear conjugate gradient coefficients with global convergence properties. Appl. Math. Comput. 276, 297–300 (2016)
Yousif, O.O.O.: The convergence properties of RMIL+ conjugate gradient method under the strong Wolfe line search. Appl. Math. Comput. 367, 124777 (2020)
Al-Baali, M.: Descent property and global convergence of the Fletcher–Reeves method with inexact line search. IMA J. Numer. Anal. 5(1), 121–124 (1985)
Gilbert, J.C., Nocedal, J.: Global convergence properties of conjugate gradient methods for optimization. SIAM J. Optim. 2(1), 21–42 (1992)
Touati-Ahmed, D., Storey, C.: Efficient hybrid conjugate gradient techniques. J. Optim. Theory Appl. 64(2), 379–397 (1990)
Hu, Y.F., Storey, C.: Global convergence result for conjugate gradient methods. J. Optim. Theory Appl. 71(2), 399–405 (1991)
Awwal, A.M., Sulaiman, I.M., Malik, M., Mamat, M., Kumam, P., Sitthithakerngkiet, K.: A spectral RMIL+ conjugate gradient method for unconstrained optimization with applications in portfolio selection and motion control. IEEE Access 9, 75398–75414 (2021)
Beale, E.M.L.: A deviation of conjugate gradients. In: Numerical Methods for Nonlinear Optimization, pp. 39–43 (1972)
McGuire, M.F., Wolfe, P.: Evaluating a restart procedure for conjugate gradients. IBM Thomas J. Watson Research Division (1973)
Zhang, L., Zhou, W., Li, D.H.: A descent modified Polak–Ribière–Polyak conjugate gradient method and its global convergence. IMA J. Numer. Anal. 26(4), 629–640 (2006)
Liu, J.K., Feng, Y.M., Zou, L.M.: Some three-term conjugate gradient methods with the inexact line search condition. Calcolo 55(2), 1–16 (2018)
Zhang, L., Zhou, W., Li, D.: Some descent three-term conjugate gradient methods and their global convergence. Optim. Methods Softw. 22(4), 697–711 (2007)
Andrei, N.: A simple three-term conjugate gradient algorithm for unconstrained optimization. J. Comput. Appl. Math. 241, 19–29 (2013)
Al-Bayati, A.Y., Altae, H.W.: A new three-term non-linear conjugate gradient method for unconstrained optimization. Can. J. Sci. Eng. Math. Can. 1, 108–124 (2010)
Dong, X., Liu, H., He, Y., Babaie-Kafaki, S., Ghanbari, R.: A new three–term conjugate gradient method with descent direction for unconstrained optimization. Math. Model. Anal. 21(3), 399–411 (2016)
Sun, M., Liu, J.: Three modified Polak–Ribiere–Polyak conjugate gradient methods with sufficient descent property. J. Inequal. Appl. 2015(1), 1 (2015)
Zoutendijk, G.: Nonlinear programming, computational methods. In: Integer and Nonlinear Programming, pp. 37–86 (1970)
Andrei, N.: Nonlinear Conjugate Gradient Methods for Unconstrained Optimization. Springer, Berlin (2020)
Jamil, M., Yang, X.S.: A literature survey of benchmark functions for global optimisation problems. Int. J. Math. Model. Numer. Optim. 4(2), 150–194 (2013)
Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91(2), 201–213 (2002)
World heath organization: Report on coronavirus (COVID-19) (2020)
Sulaiman, I.M., Mamat, M.: A new conjugate gradient method with descent properties and its application to regression analysis. J. Numer. Anal. Ind. Appl. Math. 14(1–2), 25–39 (2020)
ul Rehman, A., Singh, R., Agarwal, P.: Modeling, analysis and prediction of new variants of COVID-19 and Dengue co-infection on complex network. Chaos Solitons Fractals 2021, 111008 (2021)
Zhang, Y., He, L., Hu, C., Guo, J., Li, J., Shi, Y.: General four-step discrete-time zeroing and derivative dynamics applied to time-varying nonlinear optimization. J. Comput. Appl. Math. 347, 314–329 (2019)
Awwal, A.M., Kumam, P., Wang, L., Huang, S., Kumam, W.: Inertial-based derivative-free method for system of monotone nonlinear equations and application. IEEE Access 8, 226921–226930 (2020)
Yahaya, M.M., Kumam, P., Awwal, A.M., Aji, S.: A structured quasi–Newton algorithm with nonmonotone search strategy for structured NLS problems and its application in robotic motion control. J. Comput. Appl. Math. 395, 113582 (2021)
Aji, S., Kumam, P., Awwal, A.M., Yahaya, M.M., Kumam, W.: Two hybrid spectral methods with inertial effect for solving system of nonlinear monotone equations with application in robotics. IEEE Access 9, 30918–30928 (2021)
Awwal, A.M., Kumam, P., Mohammad, H.: Iterative algorithm with structured diagonal Hessian approximation for solving nonlinear least squares problems. J. Nonlinear Convex Anal. 22(6), 1173–1188 (2021)
Agarwal, P., Ahsan, S., Akbar, M., Nawaz, R., Cesarano, C.: A reliable algorithm for solution of higher dimensional nonlinear ((1+ 1)) and ((2+ 1)) dimensional Volterra–Fredholm integral equations. Dolomites Res. Notes Approx. 14(2), 18–25 (2021)
Shah, N.A., Agarwal, P., Chung, J.D., El-Zahar, E.R., Hamed, Y.S.: Analysis of optical solitons for nonlinear Schrödinger equation with detuning term by iterative transform method. Symmetry 12(11), 1850 (2020)
Saoudi, K., Agarwal, P., Mursaleen, M.: A multiplicity result for a singular problem with subcritical nonlinearities. J. Nonlinear Funct. Anal., 1–18 (2017)
Rahmoune, A., Ouchenane, D., Boulaaras, S., Agarwal, P.: Growth of solutions for a coupled nonlinear Klein–Gordon system with strong damping, source, and distributed delay terms. Adv. Differ. Equ. 2020(1), 1 (2020)
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Disclaimer:
This article is autogenerated using RSS feeds and has not been created or edited by OA JF.
Click here for Source link (https://www.springeropen.com/)