• 1.

    Neu J, Walker WA. Necrotizing enterocolitis. N Engl J Med. 2011;364(3):255–64.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 2.

    Zozaya C, Shah J, Pierro A, Zani A, Synnes A, Lee S, Shah PS, Canadian Neonatal N, the Canadian Neonatal Follow-Up Network I. Neurodevelopmental and growth outcomes of extremely preterm infants with necrotizing enterocolitis or spontaneous intestinal perforation. J Pediatr Surg. 2021;56(2):309–16.

    PubMed 

    Google Scholar
     

  • 3.

    Matei A, Montalva L, Goodbaum A, Lauriti G, Zani A. Neurodevelopmental impairment in necrotising enterocolitis survivors: systematic review and meta-analysis. Arch Dis Child Fetal Neonatal Ed. 2020;105(4):432–9.

    PubMed 

    Google Scholar
     

  • 4.

    Patel RM, Kandefer S, Walsh MC, Bell EF, Carlo WA, Laptook AR, Sanchez PJ, Shankaran S, Van Meurs KP, Ball MB, et al. Causes and timing of death in extremely premature infants from 2000 through 2011. New Engl J Med. 2015;372(4):331–40.

    CAS 
    PubMed 

    Google Scholar
     

  • 5.

    Calvert W, Sampat K, Jones M, Baillie C, Lamont G, Losty PD. Necrotising enterocolitis—a 15-year outcome report from a UK specialist centre. Acta Paediatr. 2021;110(2):495–502.

    PubMed 

    Google Scholar
     

  • 6.

    Nino DF, Sodhi CP, Hackam DJ. Necrotizing enterocolitis: new insights into pathogenesis and mechanisms. Nat Rev Gastro Hepat. 2016;13(10):590–600.

    CAS 

    Google Scholar
     

  • 7.

    Repa A, Thanhaeuser M, Endress D, Weber M, Kreissl A, Binder C, Berger A, Haiden N. Probiotics (Lactobacillus acidophilus and Bifidobacterium bifidum) prevent NEC in VLBW infants fed breast milk but not formula (vol 77, pg 381, 2015). Pediatr Res. 2016;79(1):124–124.


    Google Scholar
     

  • 8.

    Frost BL, Modi BP, Jaksic T, Caplan MS. New medical and surgical insights into neonatal necrotizing enterocolitis a review. Jama Pediatr. 2017;171(1):83–8.

    PubMed 

    Google Scholar
     

  • 9.

    Costeloe K, Hardy P, Juszczak E, Wilks M, Millar MR, Study PPI. Bifidobacterium breve BBG-001 in very preterm infants: a randomised controlled phase 3 trial. Lancet. 2016;387(10019):649–60.

    PubMed 

    Google Scholar
     

  • 10.

    Basha S, Surendran N, Pichichero M. Immune responses in neonates. Expert Rev Clin Immunol. 2014;10(9):1171–84.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 11.

    Eaton S, Rees CM, Hall NJ. Current research on the epidemiology, pathogenesis, and management of necrotizing enterocolitis. Neonatology. 2017;111(4):423–30.

    PubMed 

    Google Scholar
     

  • 12.

    Sodhi CP, Neal MD, Siggers R, Sho S, Ma CR, Branca MF, Prindle T, Russo AM, Afrazi A, Good M, et al. Intestinal epithelial toll-like receptor 4 regulates goblet cell development and is required for necrotizing enterocolitis in mice. Gastroenterology. 2012;143(3):708-U234.

    CAS 
    PubMed 

    Google Scholar
     

  • 13.

    Hackam DJ, Good M, Sodhi CP. Mechanisms of gut barrier failure in the pathogenesis of necrotizing enterocolitis: toll-like receptors throw the switch. Semin Pediatr Surg. 2013;22(2):76–82.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 14.

    Yazji I, Sodhi CP, Lee EK, Good M, Egan CE, Afrazi A, Neal MD, Jia H, Lin J, Ma C, et al. Endothelial TLR4 activation impairs intestinal microcirculatory perfusion in necrotizing enterocolitis via eNOS-NO-nitrite signaling. Proc Natl Acad Sci USA. 2013;110(23):9451–6.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    Egan CE, Sodhi CP, Good M, Lin J, Jia HP, Yamaguchi Y, Lu P, Ma CR, Branca MF, Weyandt S, et al. Toll-like receptor 4-mediated lymphocyte influx induces neonatal necrotizing enterocolitis. J Clin Investig. 2016;126(2):495–508.

    PubMed 

    Google Scholar
     

  • 16.

    Weitkamp JH, Rudzinski E, Koyama T, Correa H, Matta P, Alberty B, Polk DB. Ontogeny of FOXP3(+) regulatory T cells in the postnatal human small intestinal and large intestinal lamina propria. Pediatr Dev Pathol. 2009;12(6):443–9.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 17.

    Dingle BM, Liu YY, Fatheree NY, Min J, Rhoads JM, Tran DQ. FoxP3(+) regulatory T cells attenuate experimental necrotizing enterocolitis. PLoS ONE. 2013;8(12):e82963.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 18.

    Weitkamp JH, Rosen MJ, Zhao Z, Koyama T, Geem D, Denning TL, Rock MT, Moore DJ, Halpern MD, Matta P, et al. Small intestinal intraepithelial TCRgammadelta+ T lymphocytes are present in the premature intestine but selectively reduced in surgical necrotizing enterocolitis. PLoS ONE. 2014;9(6):e99042.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 19.

    Cho SX, Berger PJ, Nold-Petry CA, Nold MF. The immunological landscape in necrotising enterocolitis. Expert Rev Mol Med. 2016;18:e12.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, Cua DJ, Littman DR. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell. 2006;126(6):1121–33.

    CAS 
    PubMed 

    Google Scholar
     

  • 21.

    Sun Z, Unutmaz D, Zou YR, Sunshine MJ, Pierani A, Brenner-Morton S, Mebius RE, Littman DR. Requirement for RORgamma in thymocyte survival and lymphoid organ development. Science. 2000;288(5475):2369–73.

    CAS 
    PubMed 

    Google Scholar
     

  • 22.

    Kurebayashi S, Ueda E, Sakaue M, Patel DD, Medvedev A, Zhang F, Jetten AM. Retinoid-related orphan receptor gamma (ROR gamma) is essential for lymphoid organogenesis and controls apoptosis during thymopoiesis. Proc Natl Acad Sci USA. 2000;97(18):10132–7.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 23.

    Patel DD, Kuchroo VK. Th17 cell pathway in human immunity: lessons from genetics and therapeutic interventions. Immunity. 2015;43(6):1040–51.

    CAS 
    PubMed 

    Google Scholar
     

  • 24.

    Eberl G. Development and evolution of RORgammat+ cells in a microbe’s world. Immunol Rev. 2012;245(1):177–88.

    CAS 
    PubMed 

    Google Scholar
     

  • 25.

    Ueno A, Jeffery L, Kobayashi T, Hibi T, Ghosh S, Jijon H. Th17 plasticity and its relevance to inflammatory bowel disease. J Autoimmun. 2018;87:38–49.

    CAS 
    PubMed 

    Google Scholar
     

  • 26.

    Weitkamp JH, Koyama T, Rock MT, Correa H, Goettel JA, Matta P, Oswald-Richter K, Rosen MJ, Engelhardt BG, Moore DJ, et al. Necrotising enterocolitis is characterised by disrupted immune regulation and diminished mucosal regulatory (FOXP3)/effector (CD4, CD8) T cell ratios. Gut. 2013;62(1):73–82.

    CAS 
    PubMed 

    Google Scholar
     

  • 27.

    Zhao X, Zhou J, Liang W, Sheng Q, Lu L, Chen T, Chen J, Tan K, Lv Z. Probiotics mixture reinforces barrier function to ameliorate necrotizing enterocolitis by regulating PXR-JNK pathway. Cell Biosci. 2021;11(1):20.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Huh JR, Leung MW, Huang P, Ryan DA, Krout MR, Malapaka RR, Chow J, Manel N, Ciofani M, Kim SV, et al. Digoxin and its derivatives suppress TH17 cell differentiation by antagonizing RORgammat activity. Nature. 2011;472(7344):486–90.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 29.

    Solt LA, Kumar N, Nuhant P, Wang Y, Lauer JL, Liu J, Istrate MA, Kamenecka TM, Roush WR, Vidovic D, et al. Suppression of TH17 differentiation and autoimmunity by a synthetic ROR ligand. Nature. 2011;472(7344):491–4.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 30.

    Xiao S, Yosef N, Yang J, Wang Y, Zhou L, Zhu C, Wu C, Baloglu E, Schmidt D, Ramesh R, et al. Small-molecule RORgammat antagonists inhibit T helper 17 cell transcriptional network by divergent mechanisms. Immunity. 2014;40(4):477–89.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 31.

    Withers DR, Hepworth MR, Wang X, Mackley EC, Halford EE, Dutton EE, Marriott CL, Brucklacher-Waldert V, Veldhoen M, Kelsen J, et al. Transient inhibition of ROR-gammat therapeutically limits intestinal inflammation by reducing TH17 cells and preserving group 3 innate lymphoid cells. Nat Med. 2016;22(3):319–23.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 32.

    Chang D, Xing Q, Su Y, Zhao X, Xu W, Wang X, Dong C. The conserved non-coding sequences CNS6 and CNS9 control cytokine-induced rorc transcription during T helper 17 cell differentiation. Immunity. 2020;53(3):614–626.e614.

    CAS 
    PubMed 

    Google Scholar
     

  • 33.

    Cho SX, Rudloff I, Lao JC, Pang MA, Goldberg R, Bui CB, McLean CA, Stock M, Klassert TE, Slevogt H, et al. Characterization of the pathoimmunology of necrotizing enterocolitis reveals novel therapeutic opportunities. Nat Commun. 2020;11(1):5794.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 34.

    Eberl G, Littman DR. The role of the nuclear hormone receptor RORgammat in the development of lymph nodes and Peyer’s patches. Immunol Rev. 2003;195:81–90.

    CAS 
    PubMed 

    Google Scholar
     

  • 35.

    Eberl G. ROR gamma t, a multitask nuclear receptor at mucosal surfaces. Mucosal Immunol. 2017;10(1):27–34.

    CAS 
    PubMed 

    Google Scholar
     

  • 36.

    Fujino S, Andoh A, Bamba S, Ogawa A, Hata K, Araki Y, Bamba T, Fujiyama Y. Increased expression of interleukin 17 in inflammatory bowel disease. Gut. 2003;52(1):65–70.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 37.

    Lock C, Hermans G, Pedotti R, Brendolan A, Schadt E, Garren H, Langer-Gould A, Strober S, Cannella B, Allard J, et al. Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nat Med. 2002;8(5):500–8.

    CAS 
    PubMed 

    Google Scholar
     

  • 38.

    Kotake S, Udagawa N, Takahashi N, Matsuzaki K, Itoh K, Ishiyama S, Saito S, Inoue K, Kamatani N, Gillespie MT, et al. IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J Clin Investig. 1999;103(9):1345–52.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 39.

    Teunissen MB, Koomen CW, de Waal MR, Wierenga EA, Bos JD. Interleukin-17 and interferon-gamma synergize in the enhancement of proinflammatory cytokine production by human keratinocytes. J Investig Dermatol. 1998;111(4):645–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 40.

    Tian J, Liu Y, Jiang Y, Zhou H, Zhu T, Zhao X, Peng L, Yan C. Association of single nucleotide polymorphisms of IL23R and IL17 with necrotizing enterocolitis in premature infants. Mol Cell Biochem. 2017;430(1–2):201–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 41.

    Papp KA, Leonardi C, Menter A, Ortonne JP, Krueger JG, Kricorian G, Aras G, Li J, Russell CB, Thompson EH, et al. Brodalumab, an anti-interleukin-17-receptor antibody for psoriasis. N Engl J Med. 2012;366(13):1181–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 42.

    Genovese MC, Van den Bosch F, Roberson SA, Bojin S, Biagini IM, Ryan P, Sloan-Lancaster J. LY2439821, a humanized anti-interleukin-17 monoclonal antibody, in the treatment of patients with rheumatoid arthritis: A phase I randomized, double-blind, placebo-controlled, proof-of-concept study. Arthritis Rheum. 2010;62(4):929–39.

    CAS 
    PubMed 

    Google Scholar
     

  • 43.

    Hueber W, Sands BE, Lewitzky S, Vandemeulebroecke M, Reinisch W, Higgins PD, Wehkamp J, Feagan BG, Yao MD, Karczewski M, et al. Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn’s disease: unexpected results of a randomised, double-blind placebo-controlled trial. Gut. 2012;61(12):1693–700.

    CAS 
    PubMed 

    Google Scholar
     

  • 44.

    Moncada RR, Moron JMV, Manrique HP. The onset of ulcerative colitis during treatment with secukinumab: can anti-IL-17A be a trigger for inflammatory bowel disease? Rev Esp Enferm Dig. 2019;111(9):720.


    Google Scholar
     

  • 45.

    Fauny M, Moulin D, D’Amico F, Netter P, Petitpain N, Arnone D, Jouzeau JY, Loeuille D, Peyrin-Biroulet L. Paradoxical gastrointestinal effects of interleukin-17 blockers. Ann Rheum Dis. 2020;79(9):1132–8.

    CAS 
    PubMed 

    Google Scholar
     

  • 46.

    Gladiator A, Wangler N, Trautwein-Weidner K, LeibundGut-Landmann S. Cutting edge: IL-17-secreting innate lymphoid cells are essential for host defense against fungal infection. J Immunol. 2013;190(2):521–5.

    CAS 
    PubMed 

    Google Scholar
     

  • 47.

    O’Connor W, Kamanaka M, Booth CJ, Town T, Nakae S, Iwakura Y, Kolls JK, Flavell RA. A protective function for interleukin 17A in T cell-mediated intestinal inflammation. Nat Immunol. 2009;10(6):603-U665.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 48.

    Sonnenberg GF, Fouser LA, Artis D. Border patrol: regulation of immunity, inflammation and tissue homeostasis at barrier surfaces by IL-22. Nat Immunol. 2011;12(5):383–90.

    CAS 
    PubMed 

    Google Scholar
     

  • 49.

    Xiao S, Yosef N, Yang JF, Wang YH, Zhou L, Zhu C, Wu C, Baloglu E, Schmidt D, Ramesh R, et al. Small-molecule ROR gamma t antagonists inhibit T helper 17 cell transcriptional network by divergent mechanisms. Immunity. 2014;40(4):477–89.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 50.

    Jilling T, Simon D, Lu J, Meng FJ, Li D, Schy R, Thomson RB, Soliman A, Arditi M, Caplan MS. The roles of bacteria and TLR4 in rat and murine models of necrotizing enterocolitis. J Immunol. 2006;177(5):3273–82.

    CAS 
    PubMed 

    Google Scholar
     

  • 51.

    Jilling T, Lu J, Jackson M, Caplan MS. Intestinal epithelial apoptosis initiates gross bowel necrosis in an experimental rat model of neonatal necrotizing enterocolitis. Pediatr Res. 2004;55(4):622–9.

    PubMed 

    Google Scholar
     

  • 52.

    Sun S, Luo L, Liang W, Yin Q, Guo J, Rush AM, Lv Z, Liang Q, Fischbach MA, Sonnenburg JL, et al. Bifidobacterium alters the gut microbiota and modulates the functional metabolism of T regulatory cells in the context of immune checkpoint blockade. Proc Natl Acad Sci USA. 2020;117(44):27509–15.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)