• Cai XL, Wang ZY, Xing YY, Zhang JL, Hong MM (1984) Aberrant splicing of intron 1 leads to the heterogeneous 5′UTR and decreased expression of waxy gene in rice cultivars of intermediate amylose content. Plant J 14:459–465


    Google Scholar
     

  • Chen KL, Wang YP, Zhang R, Zhang HW, Gao CX (2019) CRISPR/Cas genome gditing and precision plant breeding in agriculture. Annu Rev Plant Biol 70:667–697

    CAS 

    Google Scholar
     

  • Chen MH, Bergman CJ, Pinson SRM, Fjellstrom RG (2008) Waxy gene haplotypes: associations with pasting properties in an international rice germplasm collection. J Cereal Sci 48:781–788

    CAS 

    Google Scholar
     

  • Dobo M, Ayres N, Walker G, Park WD (2010) Polymorphism in the GBSS gene affects amylose content in US and European rice germplasm. J Cereal Sci 52:450–456

    CAS 

    Google Scholar
     

  • Fiaz S, Ahmad S, Noor MA, Wang XK, Younas A, Riaz A, Riaz A, Ali F (2019) Applications of the CRISPR/Cas9 system for rice grain quality improvement perspectives and opportunities. Int J MolSci 20:888

    CAS 

    Google Scholar
     

  • Fitzgerald MA, McCouch SR, Hall RD (2009) Not just a grain of rice: the quest for quality. Trends Plant Sci 14:133–139

    CAS 
    PubMed 

    Google Scholar
     

  • Gao CX (2021) Genome engineering for crop improvement and future agriculture. Cell 184:1621–1635

    CAS 
    PubMed 

    Google Scholar
     

  • Hiei Y, Komari T, Kubo T (1997) Transformation of rice mediated by Agrobacterium tumefaciens. Plant Mol Biol 35:205–218

    CAS 
    PubMed 

    Google Scholar
     

  • Huang LC, Li QF, Zhang CQ, Chu R, Gu ZW, Tan HY, Zhao DS, Fan XL, Liu QQ (2020a) Creating novel Wx alleles with fine-tuned amylose levels and improved grain quality in rice by promoter editing using CRISPR/Cas9 system. Plant Biotechnol J 18:2164–2166

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang LC, Nese S, Liu QQ (2020b) Waxy editing old meets new. Trends Plant Sci 25:963–966

    CAS 
    PubMed 

    Google Scholar
     

  • Huang XR, Su F, Huang S, Mei FT, Niu XM, Ma CL, Zhang H, Zhu XG, Zhu JK, Zhang JS (2021) Novel Wx alleles generated by base editing for improvement of rice grain quality. J Integr Plant Biol 63:1632–1638

    CAS 
    PubMed 

    Google Scholar
     

  • Isshiki M, Morino K, Nakajima M, Okagaki RJ, Wessler SR, Izawa T, Shimamoto K (1998) A naturally occurring functional allele of the rice waxy locus has a GT to TT mutation at the 5′ splice site of the first intron. Plant J 15:133–138

    CAS 
    PubMed 

    Google Scholar
     

  • Jin L, Lu Y, Shao YF, Zhang G, Xiao P, Shen SQ, Corke H, Bao JS (2010) Molecular marker assisted selection for improvement of the eating, cooking and sensory quality of rice (Oryza sativa L.). J Cereal Sci 51:159–164

    CAS 

    Google Scholar
     

  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jobling S (2004) Improving starch for food and industrial applications. Curr Opin Plant Biol 7:210–218

    CAS 
    PubMed 

    Google Scholar
     

  • Juliano BO (1992) Structure, chemistry, and function of the rice grain and its fractions. Cereal Foods World 37:772–772

    CAS 

    Google Scholar
     

  • Kimiko I, Hiroko O, Kyoko O, Hidetaka H, Yasuhito T, Mitsui T (2003) Introduction of Wx transgene into rice wx mutants leads to both high- and low-amylose rice. Plant Cell Physiol 44:473–480


    Google Scholar
     

  • Larkin PD, Park WD (1999) Transcript accumulation and utilization of alternate and non-consensus splice sites in rice granule-bound starch synthase are temperature—sensitive and controlled by a single-nucleotide polymorphism. Plant Mol Biol 40:719–727

    CAS 
    PubMed 

    Google Scholar
     

  • Lau WC, Rafii MY, Ismail MR, Puteh A, Latif MA, Ramli A (2015) Review of functional markers for improving cooking, eating, and the nutritional qualities of rice. Front Plant Sci 6:832

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li H, Prakash S, Nicholson TM, Fitzgerald MA, Gilbert RG (2016) The importance of amylose and amylopectin fine structure for textural properties of cooked rice grains. Food Chem 196:702–711

    CAS 
    PubMed 

    Google Scholar
     

  • Li Y, Ma H, Zhang J, Wang Z, Hong MM (1995) Effects of the first intron of rice Waxy gene on the expression of foreign genes in rice and tobacco protoplasts. Plant Sci 108:181–190

    CAS 

    Google Scholar
     

  • Liu QQ, Yu HX, Chen XH, Cai XL, Tang SZ, Wang ZY, Gu MH (2005) Field performance of transgenic indica hybrid rice with improved cooking and eating quality by down-regulation of Wx gene expression. Mol Breeding 16:199–208

    CAS 

    Google Scholar
     

  • Ma XL, Zhang QY, Zhu QL, Liu W, Chen Y, Qiu R, Wang B, Yang ZF, Li HY, Lin YR, Xie YY, Shen RX, Chen SF, Wang Z, Chen YL, Guo JX, Chen LT, Zhao XC, Dong ZC, Liu YG (2015) A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant 8:1274–1284

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mikami I, Uwatoko N, Ikeda Y, Yamaguchi J, Hirano HY, Suzuki Y, Sano Y (2008) Allelic diversification at the wx locus in landraces of Asian rice. Theor Appl Genet 116:979–989

    CAS 
    PubMed 

    Google Scholar
     

  • Pandey MK, Rani NS, Madhav MS, Sundaram RM, Varaprasad GS, Sivaranjani AK, Bohra A, Kumar GR, Kumar A (2012) Different isoforms of starch-synthesizing enzymes controlling amylose and amylopectin content in rice (Oryza sativa L.). Biotechnol Adv 30:1697–1706

    CAS 
    PubMed 

    Google Scholar
     

  • Larkin PD, Park WD (2003) Association of waxy gene single nucleotide polymorphisms with starch. Mol Breeding 12:335–339

    CAS 

    Google Scholar
     

  • Phing Lau WC, Latif MA, Rafii MY, Ismail MR, Puteh A (2016) Advances to improve the eating and cooking qualities of rice by marker-assisted breeding. Crit Rev Biotechnol 36:87–98

    PubMed 

    Google Scholar
     

  • Richter C, Chang JT, Fineran PC (2012) Function and regulation of clustered regularly interspaced short palindromic repeats (CRISPR) / CRISPR associated (Cas) systems. Viruses 4:2291–2311

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Terada R, Nakajima M, Isshiki M, Okagaki RJ, ShimamotoK WSR (2000) Antisense Waxy genes with highly active promoters effectively suppress Waxy gene expression in transgenic rice. Plant Cell Physiol 41:881–888

    CAS 
    PubMed 

    Google Scholar
     

  • Rose AB (2008) Intron-mediated regulation of gene expression. Curr Top Microbiol Immunol 326:277–290

    CAS 
    PubMed 

    Google Scholar
     

  • Rose AB (2019) Introns as gene regulators: a brick on the accelerator. Front Genet 9:672

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Samadder P, Sivamani E, Lu JL, Li XG, Qu RD (2008) Transcriptional and post-transcriptional enhancement of gene expression by the 5′ UTR intron of rice rubi3 gene in transgenic rice cells. Mol Genet Genomics 279:429–439

    CAS 
    PubMed 

    Google Scholar
     

  • Sun YW, Jiao G, Liu ZP, Zhang X, Li JY, Guo XP, Du WM, Du JL, Francis F, Zhao YD, Xia LQ (2017) Generation of high-amylose rice through CRISPR/Cas9- mediated targeted mutagenesis of starch branching enzymes. Front Plant Sci 8:298

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Teng B, Zeng RZ, Wang YC, Liu ZQ, Zhang ZM, Zhu HT, Ding XH, Li WT, Zhang GP (2012) Detection of allelic variation at the Wx locus with single-segment substitution lines in rice (Oryza sativa L.). Mol Breeding 30:583–595


    Google Scholar
     

  • Tian ZX, Qian Q, Liu QQ, Yan MX, Liu XF, Yan CJ, Liu GF, Gao ZY, Tang SZ, Zeng DL, Wang YH, Yu JM, Gu MH, Li JY (2009) Allelic diversities in rice starch biosynthesis lead to a diverse array of rice eating and cooking qualities. Proc Natl Acad Sci USA 106:21760–21765

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang ZY, Wu ZL, Xing YY, Zheng FG, Guo XL, Zhang WG, Hong MM (1990) Nucleotide sequence of rice waxy gene. Nucleic Acids Res 18:5898

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu RF, Li H, Qin RY, Li J, Qiu CH, Yang YC, Ma H, Li L, Wei PC, Yang JB (2015) Generation of inheritable and “transgene clean” targeted genome-modified rice in later generations using the CRISPR/Cas9 system. Sci Rep 5:11491

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu Y, Lin QP, Li XF, Wang FQ, Chen ZH, Wang J, Li WQ, Fan FJ, Tao YJ, Jiang YJ, Wei XD, Zhang R, Zhu QH, Bu QY, Yang J, Gao CX (2021) Fine-tuning the amylose content of rice by precise base editing of the Wx gene. Plant Biotechnol J 19:11–13

    CAS 
    PubMed 

    Google Scholar
     

  • Yu HX, Liu QQ, Xu L, Lu MF, Yang XJ, Gong ZY, Cai XL, Zhang YS, Zhang CQ, Wang ZY, Gu MH (2009) Quality characteristics and field performance of selectable marker-free transgenic rice with antisense Wx gene and improved quality derived from the elite parents of hybrid indica rice. J Cereal Sci 50:370–375

    CAS 

    Google Scholar
     

  • Zeng DC, Liu TL, Ma XL, Wang B, Zheng ZY, Zhang YL, Xie XR, Yang BW, Zhao Z, Zhu QL, Liu YG (2020) Quantitative regulation of Waxy expression by CRISPR/Cas9-based promoter and 5′UTR-intron editing improves grain quality in rice. Plant Biotechnol J 18:2385–2387

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang CQ, Yang Y, Chen SJ, Liu XJ, Zhu JH, Zhou LH, Lu Y, Li QF, Fan XL, Tang SZ, Gu MH, Liu QQ (2021) A rare Waxy allele coordinately improves rice eating and cooking quality and grain transparency. J Integr Plant Biol 63:889–901

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang CQ, Zhu JH, Chen SJ, Fan XL, Li QF, Lu Y, Wang M, Yu HX, Yi CD, Tang SZ, Gu MH, Liu QQ (2019) Wx(lv), the ancestral allele of rice waxy gene. Mol Plant 12:1157–1166

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang H, Duan L, Dai JS, Zhang CQ, Li J, Gu MH, Liu QQ, Zhu Y (2014a) Major QTLs reduce the deleterious effects of high temperature on rice amylose content by increasing splicing efficiency of Wx pre-mRNA. Theor Appl Genet 127:273–282

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang H, Zhang JS, Wei PL, Zhang BT, Gou F, Feng ZY, Mao YF, Yang L, Zhang H, Xu NF, Zhu JK (2014b) The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol J 12:797–807

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang JS, Zhang H, Botella JR, Zhu JK (2018) Generation of new glutinous rice by CRISPR/Cas9-targeted mutagenesis of the Waxy gene in elite rice varieties. J Integr Plant Biol 60:369–375

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou H, Xia D, Zhao D, Li YH, Li PB, Wu B, Gao GJ, Zhang QL, Wang GW, Xiao JH, Li XH, Yu SB, Lian XM, He YQ (2021) The origin of Wx(la) provides new insights into the improvement of grain quality in rice. J Integr Plant Biol 63:878–888

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou Z, Robards K, Helliwell S, Blanchard C (2002) Composition and functional properties of rice. Int J Food Sci Tech 37:849–868

    CAS 

    Google Scholar
     

  • Zhu HC, Li C, Gao CX (2020) Applications of CRISPR-Cas in agriculture and plant biotechnology. Nat Rev Mol Cell Biol 21:661–677

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.springeropen.com/)