• 1.

    Alzheimer’s disease facts and figures. https://www.alz.org/alzheimers-dementia/facts-figures. Accessed 27 Dec 2021

  • 2.

    FDA approved treatments Alzheimer’s. https://alz.org/media/documents/fda-approved-treatments-alzheimers-ts.pdf. Accessed 27 Dec 2021.

  • 3.

    Sevigny J, Chiao P, Bussiere T, Weinreb PH, Williams L, Maier M, Dunstan R, Salloway S, Chen T, Ling Y, O’Gorman J, Qian F, Arastu M, Li M, Chollate S, Brennan MS, Quintero-Monzon O, Scannevin RH, Arnold HM, Engber T, Rhodes K, Ferrero J, Hang Y, Mikulskis A, Grimm J, Hock C, Nitsch RM, Sandrock A. The antibody aducanumab reduces Abeta plaques in Alzheimer’s disease. Nature. 2016;537(7618):50–6.

    PubMed 
    CAS 

    Google Scholar
     

  • 4.

    Glenner GG, Wong CW. Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun. 1984;120(3):885–90.

    PubMed 
    CAS 

    Google Scholar
     

  • 5.

    Hardy J, Allsop D. Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol Sci. 1991;12(10):383–8.

    PubMed 
    CAS 

    Google Scholar
     

  • 6.

    Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science. 2002;297(5580):353–6.

    PubMed 
    CAS 

    Google Scholar
     

  • 7.

    Glenner GG, Wong CW. Alzheimer’s disease and Down’s syndrome: sharing of a unique cerebrovascular amyloid fibril protein. Biochem Biophys Res Commun. 1984;122(3):1131–5.

    PubMed 
    CAS 

    Google Scholar
     

  • 8.

    Olson MI, Shaw CM. Presenile dementia and Alzheimer’s disease in mongolism. Brain. 1969;92(1):147–56.

    PubMed 
    CAS 

    Google Scholar
     

  • 9.

    Goate A, Chartier-Harlin MC, Mullan M, Brown J, Crawford F, Fidani L, Giuffra L, Haynes A, Irving N, James L, et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature. 1991;349(6311):704–6.

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 10.

    Levy-Lahad E, Wasco W, Poorkaj P, Romano DM, Oshima J, Pettingell WH, Yu CE, Jondro PD, Schmidt SD, Wang K, et al. Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science. 1995;269(5226):973–7.

    PubMed 
    CAS 

    Google Scholar
     

  • 11.

    Sherrington R, Rogaev EI, Liang Y, Rogaeva EA, Levesque G, Ikeda M, Chi H, Lin C, Li G, Holman K, Tsuda T, Mar L, Foncin JF, Bruni AC, Montesi MP, Sorbi S, Rainero I, Pinessi L, Nee L, Chumakov I, Pollen D, Brookes A, Sanseau P, Polinsky RJ, Wasco W, Da Silva HA, Haines JL, Perkicak-Vance MA, Tanzi RE, Roses AD, Fraser PE, Rommens JM, St George-Hyslop PH. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature. 1995;375(6534):754–60.

    PubMed 
    CAS 

    Google Scholar
     

  • 12.

    Cai XD, Golde TE, Younkin SG. Release of excess amyloid beta protein from a mutant amyloid beta protein precursor. Science. 1993;259(5094):514–6.

    PubMed 
    CAS 

    Google Scholar
     

  • 13.

    Citron M, Oltersdorf T, Haass C, McConlogue L, Hung AY, Seubert P, Vigo-Pelfrey C, Lieberburg I, Selkoe DJ. Mutation of the beta-amyloid precursor protein in familial Alzheimer’s disease increases beta-protein production. Nature. 1992;360(6405):672–4.

    PubMed 
    CAS 

    Google Scholar
     

  • 14.

    Suzuki N, Cheung TT, Cai XD, Odaka A, Otvos L Jr, Eckman C, Golde TE, Younkin SG. An increased percentage of long amyloid beta protein secreted by familial amyloid beta protein precursor (beta APP717) mutants. Science. 1994;264(5163):1336–40.

    PubMed 
    CAS 

    Google Scholar
     

  • 15.

    De Strooper B, Saftig P, Craessaerts K, Vanderstichele H, Guhde G, Annaert W, Von Figura K, Van Leuven F. Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature. 1998;391(6665):387–90.

    PubMed 

    Google Scholar
     

  • 16.

    Duff K, Eckman C, Zehr C, Yu X, Prada CM, Perez-tur J, Hutton M, Buee L, Harigaya Y, Yager D, Morgan D, Gordon MN, Holcomb L, Refolo L, Zenk B, Hardy J, Younkin S. Increased amyloid-beta42(43) in brains of mice expressing mutant presenilin 1. Nature. 1996;383(6602):710–3.

    PubMed 
    CAS 

    Google Scholar
     

  • 17.

    Bateman RJ, Xiong C, Benzinger TL, Fagan AM, Goate A, Fox NC, Marcus DS, Cairns NJ, Xie X, Blazey TM, Holtzman DM, Santacruz A, Buckles V, Oliver A, Moulder K, Aisen PS, Ghetti B, Klunk WE, McDade E, Martins RN, Masters CL, Mayeux R, Ringman JM, Rossor MN, Schofield PR, Sperling RA, Salloway S, Morris JC. Dominantly Inherited Alzheimer N: clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N Engl J Med. 2012;367(9):795–804.

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 18.

    De Strooper B. Aph-1, Pen-2, and Nicastrin with Presenilin generate an active gamma-Secretase complex. Neuron. 2003;38(1):9–12.

    PubMed 

    Google Scholar
     

  • 19.

    Takasugi N, Tomita T, Hayashi I, Tsuruoka M, Niimura M, Takahashi Y, Thinakaran G, Iwatsubo T. The role of presenilin cofactors in the gamma-secretase complex. Nature. 2003;422(6930):438–41.

    PubMed 
    CAS 

    Google Scholar
     

  • 20.

    Li YM, Xu M, Lai MT, Huang Q, Castro JL, DiMuzio-Mower J, Harrison T, Lellis C, Nadin A, Neduvelil JG, Register RB, Sardana MK, Shearman MS, Smith AL, Shi XP, Yin KC, Shafer JA, Gardell SJ. Photoactivated gamma-secretase inhibitors directed to the active site covalently label presenilin 1. Nature. 2000;405(6787):689–94.

    PubMed 
    CAS 

    Google Scholar
     

  • 21.

    Ahn K, Shelton CC, Tian Y, Zhang X, Gilchrist ML, Sisodia SS, Li YM. Activation and intrinsic gamma-secretase activity of presenilin 1. Proc Natl Acad Sci U S A. 2010;107(50):21435–40.

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 22.

    Wolfe MS, Xia W, Ostaszewski BL, Diehl TS, Kimberly WT, Selkoe DJ. Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and gamma-secretase activity. Nature. 1999;398(6727):513–7.

    PubMed 
    CAS 

    Google Scholar
     

  • 23.

    Niimura M, Isoo N, Takasugi N, Tsuruoka M, Ui-Tei K, Saigo K, Morohashi Y, Tomita T, Iwatsubo T. Aph-1 contributes to the stabilization and trafficking of the gamma-secretase complex through mechanisms involving intermolecular and intramolecular interactions. J Biol Chem. 2005;280(13):12967–75.

    PubMed 
    CAS 

    Google Scholar
     

  • 24.

    Zheng H, Koo EH. Biology and pathophysiology of the amyloid precursor protein. Mol Neurodegeneration. 2011. https://doi.org/10.1186/1750-1326-6-27.

    Article 

    Google Scholar
     

  • 25.

    Murphy MP, Hickman LJ, Eckman CB, Uljon SN, Wang R, Golde TE. gamma-Secretase, evidence for multiple proteolytic activities and influence of membrane positioning of substrate on generation of amyloid beta peptides of varying length. J Biol Chem. 1999;274(17):11914–23.

    PubMed 
    CAS 

    Google Scholar
     

  • 26.

    Takami M, Nagashima Y, Sano Y, Ishihara S, Morishima-Kawashima M, Funamoto S, Ihara Y. gamma-Secretase: successive tripeptide and tetrapeptide release from the transmembrane domain of beta-carboxyl terminal fragment. J Neurosci. 2009;29(41):13042–52.

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 27.

    Iwatsubo T, Odaka A, Suzuki N, Mizusawa H, Nukina N, Ihara Y. Visualization of A beta 42(43) and A beta 40 in senile plaques with end-specific A beta monoclonals: evidence that an initially deposited species is A beta 42(43). Neuron. 1994;13(1):45–53.

    PubMed 
    CAS 

    Google Scholar
     

  • 28.

    Jarrett JT, Berger EP, Lansbury PT Jr. The carboxy terminus of the beta amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer’s disease. Biochemistry. 1993;32(18):4693–7.

    PubMed 
    CAS 

    Google Scholar
     

  • 29.

    Mutations PSEN-1. https://www.alzforum.org/mutations/psen-1. Accessed 27 Dec 2021.

  • 30.

    Mutations PSEN-2. https://www.alzforum.org/mutations/psen-2. Accessed 27 Dec 2021.

  • 31.

    Bertram L, Tanzi RE: Chapter 3 – The Genetics of Alzheimer’s Disease. In: Molecular Biology of Neurodegenerative Diseases. Edited by Teplow DBBT-PiMBaTS, vol. 107: Academic Press; 2012: 79–100. https://doi.org/10.1016/B978-0-12-385883-2.00008-4

  • 32.

    Saura CA, Choi SY, Beglopoulos V, Malkani S, Zhang D, Shankaranarayana Rao BS, Chattarji S, Kelleher RJ 3rd, Kandel ER, Duff K, Kirkwood A, Shen J. Loss of presenilin function causes impairments of memory and synaptic plasticity followed by age-dependent neurodegeneration. Neuron. 2004;42(1):23–36.

    PubMed 
    CAS 

    Google Scholar
     

  • 33.

    Gertsik N, Chiu D, Li YM. Complex regulation of gamma-secretase: from obligatory to modulatory subunits. Front Aging Neurosci. 2014;6:342.

    PubMed 

    Google Scholar
     

  • 34.

    Wong E, Frost GR, Li Y-M. γ-Secretase modulatory proteins: the guiding hand behind the running scissors. Front Aging Neurosci. 2020;12:442.


    Google Scholar
     

  • 35.

    Lai MT, Chen E, Crouthamel MC, DiMuzio-Mower J, Xu M, Huang Q, Price E, Register RB, Shi XP, Donoviel DB, Bernstein A, Hazuda D, Gardell SJ, Li YM. Presenilin-1 and presenilin-2 exhibit distinct yet overlapping gamma-secretase activities. J Biol Chem. 2003;278(25):22475–81.

    PubMed 
    CAS 

    Google Scholar
     

  • 36.

    Wong E, Liao GP, Chang JC, Xu P, Li YM, Greengard P. GSAP modulates gamma-secretase specificity by inducing conformational change in PS1. Proc Natl Acad Sci U S A. 2019;116(13):6385–90.

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 37.

    He G, Luo W, Li P, Remmers C, Netzer WJ, Hendrick J, Bettayeb K, Flajolet M, Gorelick F, Wennogle LP, Greengard P. Gamma-secretase activating protein is a therapeutic target for Alzheimer’s disease. Nature. 2010;467(7311):95–8.

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 38.

    Hur JY, Frost GR, Wu X, Crump C, Pan SJ, Wong E, Barros M, Li T, Nie P, Zhai Y, Wang JC, Tcw J, Guo L, McKenzie A, Ming C, Zhou X, Wang M, Sagi Y, Renton AE, Esposito BT, Kim Y, Sadleir KR, Trinh I, Rissman RA, Vassar R, Zhang B, Johnson DS, Masliah E, Greengard P, Goate A, Li YM. The innate immunity protein IFITM3 modulates gamma-secretase in Alzheimer’s disease. Nature. 2020;586(7831):735–40.

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 39.

    Villa JC, Chiu D, Brandes AH, Escorcia FE, Villa CH, Maguire WF, Hu CJ, de Stanchina E, Simon MC, Sisodia SS, Scheinberg DA, Li YM. Nontranscriptional role of Hif-1alpha in activation of gamma-secretase and notch signaling in breast cancer. Cell Rep. 2014;8(4):1077–92.

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 40.

    Jung S, Hyun J, Nah J, Han J, Kim SH, Park J, Oh Y, Gwon Y, Moon S, Jo DG, Jung YK. SERP1 is an assembly regulator of gamma-secretase in metabolic stress conditions. Sci Signal. 2020;13(623):aax8949.


    Google Scholar
     

  • 41.

    Guner G, Lichtenthaler SF. The substrate repertoire of gamma-secretase/presenilin. Semin Cell Dev Biol. 2020;105:27–42.

    PubMed 

    Google Scholar
     

  • 42.

    Ables JL, Breunig JJ, Eisch AJ, Rakic P. Not(ch) just development: Notch signalling in the adult brain. Nat Rev Neurosci. 2011;12(5):269–83.

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 43.

    Hori K, Sen A, Artavanis-Tsakonas S. Notch signaling at a glance. J Cell Sci. 2013;126(Pt 10):2135–40.

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 44.

    De Strooper B, Annaert W, Cupers P, Saftig P, Craessaerts K, Mumm JS, Schroeter EH, Schrijvers V, Wolfe MS, Ray WJ, Goate A, Kopan R. A presenilin-1-dependent gamma-secretase-like protease mediates release of Notch intracellular domain. Nature. 1999;398(6727):518–22.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 45.

    Doody RS, Raman R, Farlow M, Iwatsubo T, Vellas B, Joffe S, Kieburtz K, He F, Sun X, Thomas RG, Aisen PS, Siemers E, Sethuraman G, Mohs R, Alzheimer’s Disease Cooperative Study Steering C, Semagacestat Study G. A phase 3 trial of semagacestat for treatment of Alzheimer’s disease. N Engl J Med. 2013;369(4):341–50.

    PubMed 
    CAS 

    Google Scholar
     

  • 46.

    Mitani Y, Yarimizu J, Saita K, Uchino H, Akashiba H, Shitaka Y, Ni K, Matsuoka N. Differential effects between gamma-secretase inhibitors and modulators on cognitive function in amyloid precursor protein-transgenic and nontransgenic mice. J Neurosci. 2012;32(6):2037–50.

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 47.

    Nicolas M, Wolfer A, Raj K, Kummer JA, Mill P, van Noort M, Hui CC, Clevers H, Dotto GP, Radtke F. Notch1 functions as a tumor suppressor in mouse skin. Nat Genet. 2003;33(3):416–21.

    PubMed 
    CAS 

    Google Scholar
     

  • 48.

    Xia X, Qian S, Soriano S, Wu Y, Fletcher AM, Wang XJ, Koo EH, Wu X, Zheng H. Loss of presenilin 1 is associated with enhanced beta-catenin signaling and skin tumorigenesis. Proc Natl Acad Sci U S A. 2001;98(19):10863–8.

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 49.

    De Strooper B. Lessons from a failed gamma-secretase Alzheimer trial. Cell. 2014;159(4):721–6.

    PubMed 

    Google Scholar
     

  • 50.

    Gillman KW, Starrett JE Jr, Parker MF, Xie K, Bronson JJ, Marcin LR, McElhone KE, Bergstrom CP, Mate RA, Williams R, Meredith JE Jr, Burton CR, Barten DM, Toyn JH, Roberts SB, Lentz KA, Houston JG, Zaczek R, Albright CF, Decicco CP, Macor JE, Olson RE. Discovery and evaluation of BMS-708163, a potent, selective and orally bioavailable gamma-secretase inhibitor. ACS Med Chem Lett. 2010;1(3):120–4.

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 51.

    Coric V, Salloway S, Dyck C, Kerselaers W, Kaplita S, Curtis C, Ross J, Richter RW, Andreasen N, Brody M, Sharma SK, Cedarbaum JM, Berman R. P1–343: A phase II study of the gamma-secretase inhibitor avagacestat (BMS-708163) in predementia Alzheimer’s disease. Alzheimers Dement. 2013;9:P283.


    Google Scholar
     

  • 52.

    Albright CF, Dockens RC, Meredith JE Jr, Olson RE, Slemmon R, Lentz KA, Wang JS, Denton RR, Pilcher G, Rhyne PW, Raybon JJ, Barten DM, Burton C, Toyn JH, Sankaranarayanan S, Polson C, Guss V, White R, Simutis F, Sanderson T, Gillman KW, Starrett JE Jr, Bronson J, Sverdlov O, Huang SP, Castaneda L, Feldman H, Coric V, Zaczek R, Macor JE, Houston J, Berman RM, Tong G. Pharmacodynamics of selective inhibition of gamma-secretase by avagacestat. J Pharmacol Exp Ther. 2013;344(3):686–95.

    PubMed 
    CAS 

    Google Scholar
     

  • 53.

    Crump CJ, Castro SV, Wang F, Pozdnyakov N, Ballard TE, Sisodia SS, Bales KR, Johnson DS, Li YM. BMS-708,163 targets presenilin and lacks notch-sparing activity. Biochemistry. 2012;51(37):7209–11.

    PubMed 
    CAS 

    Google Scholar
     

  • 54.

    Fouladi M, Stewart CF, Olson J, Wagner LM, Onar-Thomas A, Kocak M, Packer RJ, Goldman S, Gururangan S, Gajjar A, Demuth T, Kun LE, Boyett JM, Gilbertson RJ. Phase I trial of MK-0752 in children with refractory CNS malignancies: a pediatric brain tumor consortium study. J Clin Oncol. 2011;29(26):3529–34.

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 55.

    Lanz TA, Wood KM, Richter KE, Nolan CE, Becker SL, Pozdnyakov N, Martin BA, Du P, Oborski CE, Wood DE, Brown TM, Finley JE, Sokolowski SA, Hicks CD, Coffman KJ, Geoghegan KF, Brodney MA, Liston D, Tate B. Pharmacodynamics and pharmacokinetics of the gamma-secretase inhibitor PF-3084014. J Pharmacol Exp Ther. 2010;334(1):269–77.

    PubMed 
    CAS 

    Google Scholar
     

  • 56.

    Strosberg JR, Yeatman T, Weber J, Coppola D, Schell MJ, Han G, Almhanna K, Kim R, Valone T, Jump H, Sullivan D. A phase II study of RO4929097 in metastatic colorectal cancer. Eur J Cancer. 2012;48(7):997–1003.

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 57.

    Nie P, Vartak A, Li YM. gamma-Secretase inhibitors and modulators: Mechanistic insights into the function and regulation of gamma-Secretase. Semin Cell Dev Biol. 2020;105:43–53.

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 58.

    Nie P, Kalidindi T, Nagle VL, Wu X, Li T, Liao GP, Frost G, Henry KE, Punzalan B, Carter LM, Lewis JS, Pillarsetty NVK, Li YM. Imaging of cancer gamma-secretase activity using an inhibitor-based PET probe. Clin Cancer Res. 2021;27(22):6145–55.

    PubMed 

    Google Scholar
     

  • 59.

    Weggen S, Eriksen JL, Das P, Sagi SA, Wang R, Pietrzik CU, Findlay KA, Smith TE, Murphy MP, Bulter T, Kang DE, Marquez-Sterling N, Golde TE, Koo EH. A subset of NSAIDs lower amyloidogenic Abeta42 independently of cyclooxygenase activity. Nature. 2001;414(6860):212–6.

    PubMed 
    CAS 

    Google Scholar
     

  • 60.

    Crump CJ, Johnson DS, Li YM. Development and mechanism of gamma-secretase modulators for Alzheimer’s disease. Biochemistry. 2013;52(19):3197–216.

    PubMed 
    CAS 

    Google Scholar
     

  • 61.

    Green RC, Schneider LS, Amato DA, Beelen AP, Wilcock G, Swabb EA, Zavitz KH. Tarenflurbil Phase 3 Study G: Effect of tarenflurbil on cognitive decline and activities of daily living in patients with mild Alzheimer disease: a randomized controlled trial. JAMA. 2009;302(23):2557–64.

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 62.

    Bursavich MG, Harrison BA, Blain JF. Gamma secretase modulators: new Alzheimer’s drugs on the horizon? J Med Chem. 2016;59(16):7389–409.

    PubMed 
    CAS 

    Google Scholar
     

  • 63.

    Mekala S, Nelson G, Li YM. Recent developments of small molecule gamma-secretase modulators for Alzheimer’s disease. RSC Med Chem. 2020;11(9):1003–22.

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 64.

    Nakano-Ito K, Fujikawa Y, Hihara T, Shinjo H, Kotani S, Suganuma A, Aoki T, Tsukidate K. E2012-induced cataract and its predictive biomarkers. Toxicol Sci. 2014;137(1):249–58.

    PubMed 
    CAS 

    Google Scholar
     

  • 65.

    Nagy CSE, Ishibashi A, Nakatani Y, Rege B, Logovinsky V. E2012, a novel gamma-secretase modulator, decreases plasma amyloid-beta levels in humans. Alzheimers Dement. 2010;6:S574.


    Google Scholar
     

  • 66.

    Borgegard T, Jureus A, Olsson F, Rosqvist S, Sabirsh A, Rotticci D, Paulsen K, Klintenberg R, Yan H, Waldman M, Stromberg K, Nord J, Johansson J, Regner A, Parpal S, Malinowsky D, Radesater AC, Li T, Singh R, Eriksson H, Lundkvist J. First and second generation gamma-secretase modulators (GSMs) modulate amyloid-beta (Abeta) peptide production through different mechanisms. J Biol Chem. 2012;287(15):11810–9.

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 67.

    Hashimoto TI, Hagiwara H, Murata Y, Takenaka O, Miyagawa T. A novel gamma-secretase modulator—pharmacology. Alzheimers Dement. 2010;6:S242.


    Google Scholar
     

  • 68.

    Portelius E, Van Broeck B, Andreasson U, Gustavsson MK, Mercken M, Zetterberg H, Borghys H, Blennow K. Acute effect on the Abeta isoform pattern in CSF in response to gamma-secretase modulator and inhibitor treatment in dogs. J Alzheimers Dis. 2010;21(3):1005–12.

    PubMed 
    CAS 

    Google Scholar
     

  • 69.

    Wager TT, Hou X, Verhoest PR, Villalobos A. Moving beyond rules: the development of a central nervous system multiparameter optimization (CNS MPO) approach to enable alignment of druglike properties. ACS Chem Neurosci. 2010;1(6):435–49.

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 70.

    Ahn JE, Carrieri C, Dela Cruz F, Fullerton T, Hajos-Korcsok E, He P, Kantaridis C, Leurent C, Liu R, Mancuso J. Pharmacokinetic and pharmacodynamic effects of a gamma-secretase modulator, PF-06648671, on CSF amyloid-beta peptides in randomized phase I studies. Clin Pharmacol Ther. 2020;107(1):211–20.

    PubMed 
    CAS 

    Google Scholar
     

  • 71.

    Boy KM, Guernon JM, Zuev DS, Xu L, Zhang Y, Shi J, Marcin LR, Higgins MA, Wu YJ, Krishnananthan S, Li J, Trehan A, Smith D, Toyn JH, Meredith JE, Burton CR, Kimura SR, Zvyaga T, Zhuo X, Lentz KA, Grace JE, Denton R, Morrison JS, Mathur A, Albright CF, Ahlijanian MK, Olson RE, Thompson LA, Macor JE. Identification and preclinical evaluation of the bicyclic pyrimidine gamma-secretase modulator BMS-932481. ACS Med Chem Lett. 2019;10(3):312–7.

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 72.

    Soares HD, Gasior M, Toyn JH, Wang JS, Hong Q, Berisha F, Furlong MT, Raybon J, Lentz KA, Sweeney F, Zheng N, Akinsanya B, Berman RM, Thompson LA, Olson RE, Morrison J, Drexler DM, Macor JE, Albright CF, Ahlijanian MK, AbuTarif M. The gamma-secretase modulator, BMS-932481, modulates abeta peptides in the plasma and cerebrospinal fluid of healthy volunteers. J Pharmacol Exp Ther. 2016;358(1):138–50.

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 73.

    Zhang Y, Boy KM, Wu YJ, Ramirez A, Toyn JH, Ahlijanian MK, Albright CF, Zhuo X, Johnson BM, Denton RR, Olson RE, Thompson LA 3rd, Macor JE. Synthesis of functionalized derivatives of the gamma-secretase modulator BMS-932481 and identification of its major metabolite. Bioorg Med Chem Lett. 2020;30(22):127530.

    PubMed 
    CAS 

    Google Scholar
     

  • 74.

    Rynearson KD, Ponnusamy M, Prikhodko O, Xie Y, Zhang C, Nguyen P, Hug B, Sawa M, Becker A, Spencer B, Florio J, Mante M, Salehi B, Arias C, Galasko D, Head BP, Johnson G, Lin JH, Duddy SK, Rissman RA, Mobley WC, Thinakaran G, Tanzi RE, Wagner SL. Preclinical validation of a potent gamma-secretase modulator for Alzheimer’s disease prevention. J Exp Med. 2021;218(4):e20202560.

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 75.

    Selkoe DJ, Hardy J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med. 2016;8(6):595–608.

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 76.

    Xu Y, Wang C, Wey HY, Liang Y, Chen Z, Choi SH, Ran C, Rynearson KD, Bernales DR, Koegel RE, Fiedler SA, Striar R, Wagner SL, Tanzi RE, Zhang C. Molecular imaging of Alzheimer’s disease-related gamma-secretase in mice and nonhuman primates. J Exp Med. 2020;217(12):e20182266.

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 77.

    Wolfe MS. Structure and function of the gamma-secretase complex. Biochemistry. 2019;58(27):2953–66.

    PubMed 
    CAS 

    Google Scholar
     

  • 78.

    Geoghegan KF, Johnson DS. Chemical proteomic technologies for drug target identification. Annu Rep Med Chem. 2010;45(45):345–60.

    CAS 

    Google Scholar
     

  • 79.

    Esler WP, Kimberly WT, Ostaszewski BL, Ye W, Diehl TS, Selkoe DJ, Wolfe MS. Activity-dependent isolation of the presenilin- gamma -secretase complex reveals nicastrin and a gamma substrate. Proc Natl Acad Sci U S A. 2002;99(5):2720–5.

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 80.

    Shearman MS, Beher D, Clarke EE, Lewis HD, Harrison T, Hunt P, Nadin A, Smith AL, Stevenson G, Castro JL. L-685,458, an aspartyl protease transition state mimic, is a potent inhibitor of amyloid beta-protein precursor gamma-secretase activity. Biochemistry. 2000;39(30):8698–704.

    PubMed 
    CAS 

    Google Scholar
     

  • 81.

    Kornilova AY, Das C, Wolfe MS. Differential effects of inhibitors on the gamma-secretase complex Mechanistic implications. J Biol Chem. 2003;278(19):16470–3.

    PubMed 
    CAS 

    Google Scholar
     

  • 82.

    Gertsik N, Am Ende CW, Geoghegan KF, Nguyen C, Mukherjee P, Mente S, Seneviratne U, Johnson DS, Li YM. Mapping the binding site of BMS-708163 on gamma-secretase with cleavable photoprobes. Cell Chem Biol. 2017;24(1):3–8.

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 83.

    Crump CJ, Fish BA, Castro SV, Chau DM, Gertsik N, Ahn K, Stiff C, Pozdnyakov N, Bales KR, Johnson DS, Li YM. Piperidine acetic acid based gamma-secretase modulators directly bind to Presenilin-1. ACS Chem Neurosci. 2011;2(12):705–10.

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 84.

    Ebke A, Luebbers T, Fukumori A, Shirotani K, Haass C, Baumann K, Steiner H. Novel gamma-secretase enzyme modulators directly target presenilin protein. J Biol Chem. 2011;286(43):37181–6.

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 85.

    Pozdnyakov N, Murrey HE, Crump CJ, Pettersson M, Ballard TE, Am Ende CW, Ahn K, Li YM, Bales KR, Johnson DS. gamma-Secretase modulator (GSM) photoaffinity probes reveal distinct allosteric binding sites on presenilin. J Biol Chem. 2013;288(14):9710–20.

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 86.

    Bai XC, Yan C, Yang G, Lu P, Ma D, Sun L, Zhou R, Scheres SHW, Shi Y. An atomic structure of human gamma-secretase. Nature. 2015;525(7568):212–7.

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 87.

    Yang G, Zhou R, Zhou Q, Guo X, Yan C, Ke M, Lei J, Shi Y. Structural basis of Notch recognition by human gamma-secretase. Nature. 2019;565(7738):192–7.

    PubMed 
    CAS 

    Google Scholar
     

  • 88.

    Zhou R, Yang G, Guo X, Zhou Q, Lei J, Shi Y. Recognition of the amyloid precursor protein by human gamma-secretase. Science. 2019. https://doi.org/10.1126/science.aaw0930.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 89.

    Yang G, Zhou R, Guo X, Yan C, Lei J, Shi Y. Structural basis of gamma-secretase inhibition and modulation by small molecule drugs. Cell. 2021;184(2):521-533.e514.

    PubMed 
    CAS 

    Google Scholar
     

  • 90.

    Liu L, Lauro BM, Wolfe MS, Selkoe DJ. Hydrophilic loop 1 of Presenilin-1 and the APP GxxxG transmembrane motif regulate gamma-secretase function in generating Alzheimer-causing Abeta peptides. J Biol Chem. 2021;296:100393.

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 91.

    Kounnas MZ, Lane-Donovan C, Nowakowski DW, Herz J, Comer WT. NGP 555, a gamma-secretase modulator, lowers the amyloid biomarker, Abeta42, in cerebrospinal fluid while preventing Alzheimer’s disease cognitive decline in rodents. Alzheimers Dement (N Y). 2017;3(1):65–73.


    Google Scholar
     

  • 92.

    Chou TC. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 2010;70(2):440–6.

    PubMed 
    CAS 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)