• 1.

    Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.

    PubMed 

    Google Scholar
     

  • 2.

    de Braud F, Maffezzini M, Vitale V, Bruzzi P, Gatta G, Hendry WF, et al. Bladder cancer. Critical reviews in oncology/hematology. 2002;41(1):89–106.

    PubMed 

    Google Scholar
     

  • 3.

    Kamat AM, Hahn NM, Efstathiou JA, Lerner SP, Malmström PU, Choi W, et al. Bladder cancer. Lancet (London, England). 2016;388(10061):2796–810.


    Google Scholar
     

  • 4.

    Fukumoto K, Kikuchi E, Mikami S, Hayakawa N, Matsumoto K, Niwa N, et al. Clinical Role of Programmed Cell Death-1 Expression in Patients with Non-muscle-invasive Bladder Cancer Recurring After Initial Bacillus Calmette-Guérin Therapy. Ann Surg Oncol. 2018;25(8):2484–91.

    PubMed 

    Google Scholar
     

  • 5.

    Hurwitz M, Adeniran A, Yao X, Hafez N, Schalper K, Rimm D, et al. The effect of BCG intravesical therapy and recurrence on PDL1 expression in non-invasive bladder cancers. J Clin Oncol. 2015;33:e15504.


    Google Scholar
     

  • 6.

    Blank C, Gajewski TF, Mackensen A. Interaction of PD-L1 on tumor cells with PD-1 on tumor-specific T cells as a mechanism of immune evasion: implications for tumor immunotherapy. Cancer immunology, immunotherapy : CII. 2005;54(4):307–14.

    CAS 
    PubMed 

    Google Scholar
     

  • 7.

    Shi L, Chen S, Yang L, Li Y. The role of PD-1 and PD-L1 in T-cell immune suppression in patients with hematological malignancies. Journal of hematology & oncology. 2013;6(1):74.


    Google Scholar
     

  • 8.

    Cha JH, Chan LC, Li CW, Hsu JL, Hung MC. Mechanisms Controlling PD-L1 Expression in Cancer. Molecular cell. 2019;76(3):359–70.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 9.

    Sun C, Mezzadra R, Schumacher TN. Regulation and Function of the PD-L1 Checkpoint. Immunity. 2018;48(3):434–52.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 10.

    Tang H, Liang Y, Anders RA, Taube JM, Qiu X, Mulgaonkar A, et al. PD-L1 on host cells is essential for PD-L1 blockade-mediated tumor regression. The Journal of clinical investigation. 2018;128(2):580–8.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 11.

    Groeger S, Domann E, Gonzales JR, Chakraborty T, Meyle J. B7-H1 and B7-DC receptors of oral squamous carcinoma cells are upregulated by Porphyromonas gingivalis. Immunobiology. 2011;216(12):1302–10.

    CAS 
    PubMed 

    Google Scholar
     

  • 12.

    Groeger S, Jarzina F, Mamat U, Meyle J: Induction of B7-H1 receptor by bacterial cells fractions of Porphyromonas gingivalis on human oral epithelial cells: B7-H1 induction by Porphyromonas gingivalis fractions. Immunobiology 2017, 222(2):137-147.

  • 13.

    Gollwitzer ES, Saglani S, Trompette A, Yadava K, Sherburn R, McCoy KD, et al. Lung microbiota promotes tolerance to allergens in neonates via PD-L1. Nature medicine. 2014;20(6):642–7.

    CAS 
    PubMed 

    Google Scholar
     

  • 14.

    Costello EK, Stagaman K, Dethlefsen L, Bohannan BJ, Relman DA. The application of ecological theory toward an understanding of the human microbiome. Science (New York, NY). 2012;336(6086):1255–62.

    CAS 

    Google Scholar
     

  • 15.

    Brubaker L, Gourdine JF, Siddiqui NY, Holland A, Halverson T, Limeria R, Pride D, Ackerman L, Forster CS, Jacobs KM et al: Forming Consensus To Advance Urobiome Research. mSystems 2021, 6(4):e0137120.

  • 16.

    Babjuk M, Burger M, Compérat EM, Gontero P, Mostafid AH, Palou J, et al. European Association of Urology Guidelines on Non-muscle-invasive Bladder Cancer (TaT1 and Carcinoma In Situ) – 2019 Update. European urology. 2019;76(5):639–57.

    CAS 
    PubMed 

    Google Scholar
     

  • 17.

    Zaghloul MS. Bladder cancer and schistosomiasis. Journal of the Egyptian National Cancer Institute. 2012;24(4):151–9.

    PubMed 

    Google Scholar
     

  • 18.

    Mostafa MH, Sheweita SA, O’Connor PJ. Relationship between schistosomiasis and bladder cancer. Clinical microbiology reviews. 1999;12(1):97–111.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 19.

    Hicks RM, Ismail MM, Walters CL, Beecham PT, Rabie MF, El Alamy MA. Association of bacteriuria and urinary nitrosamine formation with Schistosoma haematobium infection in the Qalyub area of Egypt. Transactions of the Royal Society of Tropical Medicine and Hygiene. 1982;76(4):519–27.

    CAS 
    PubMed 

    Google Scholar
     

  • 20.

    Pettenati C, Ingersoll MA. Mechanisms of BCG immunotherapy and its outlook for bladder cancer. Nature reviews Urology. 2018;15(10):615–25.

    CAS 
    PubMed 

    Google Scholar
     

  • 21.

    Markowski MC, Boorjian SA, Burton JP, Hahn NM, Ingersoll MA, Maleki Vareki S, et al. The Microbiome and Genitourinary Cancer: A Collaborative Review. European urology. 2019;75(4):637–46.

    PubMed 

    Google Scholar
     

  • 22.

    Wu P, Zhang G, Zhao J, Chen J, Chen Y, Huang W, et al. Profiling the Urinary Microbiota in Male Patients With Bladder Cancer in China. Frontiers in cellular and infection microbiology. 2018;8:167.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 23.

    Zitvogel L, Daillère R, Roberti MP, Routy B, Kroemer G. Anticancer effects of the microbiome and its products. Nature reviews Microbiology. 2017;15(8):465–78.

    CAS 
    PubMed 

    Google Scholar
     

  • 24.

    Ma W, Zhang W, Shen L, Liu J, Yang F, Maskey N, et al. Can Smoking Cause Differences in Urine Microbiome in Male Patients With Bladder Cancer? A Retrospective Study. Frontiers in oncology. 2021;11:677605.

    PubMed 

    Google Scholar
     

  • 25.

    Dzutsev A, Goldszmid RS, Viaud S, Zitvogel L, Trinchieri G. The role of the microbiota in inflammation, carcinogenesis, and cancer therapy. European journal of immunology. 2015;45(1):17–31.

    CAS 
    PubMed 

    Google Scholar
     

  • 26.

    Lynch SV, Pedersen O. The Human Intestinal Microbiome in Health and Disease. The New England journal of medicine. 2016;375(24):2369–79.

    CAS 
    PubMed 

    Google Scholar
     

  • 27.

    Willis AD, Minot SS. Strategies to Facilitate Translational Advances from Microbiome Surveys. Trends in microbiology. 2020;28(5):329–30.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade. Science (New York, NY). 2018;359(6382):1350–5.

    CAS 

    Google Scholar
     

  • 29.

    Witjes JA, Bruins HM, Cathomas R, Compérat EM, Cowan NC, Gakis G, et al. European Association of Urology Guidelines on Muscle-invasive and Metastatic Bladder Cancer: Summary of the 2020 Guidelines. Eur Urol. 2021;79(1):82-104.

  • 30.

    Matson V, Fessler J, Bao R, Chongsuwat T, Zha Y, Alegre ML, et al. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science (New York, NY). 2018;359(6371):104–8.

    CAS 

    Google Scholar
     

  • 31.

    Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT, Daillère R, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science (New York, NY). 2018;359(6371):91–7.

    CAS 

    Google Scholar
     

  • 32.

    Bi H, Tian Y, Song C, Li J, Liu T, Chen Z, et al. Urinary microbiota – a potential biomarker and therapeutic target for bladder cancer. Journal of medical microbiology. 2019;68(10):1471–8.

    CAS 
    PubMed 

    Google Scholar
     

  • 33.

    Eribe ER, Olsen I. Leptotrichia species in human infections. Anaerobe. 2008;14(3):131–7.

    PubMed 

    Google Scholar
     

  • 34.

    Castaño-Rodríguez N, Goh KL, Fock KM, Mitchell HM, Kaakoush NO. Dysbiosis of the microbiome in gastric carcinogenesis. Scientific reports. 2017;7(1):15957.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 35.

    Gao Z, Guo B, Gao R, Zhu Q, Qin H. Microbiota disbiosis is associated with colorectal cancer. Frontiers in microbiology. 2015;6:20.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 36.

    Saffarian A, Mulet C, Regnault B, Amiot A, Tran-Van-Nhieu J, Ravel J, et al. Crypt- and Mucosa Associated Core Microbiotas in Humans and Their Alteration in Colon Cancer Patients. mBio. 2019;10(4):e01315-19.

  • 37.

    Torres PJ, Fletcher EM, Gibbons SM, Bouvet M, Doran KS, Kelley ST. Characterization of the salivary microbiome in patients with pancreatic cancer. PeerJ. 2015;3:e1373.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 38.

    Warren RL, Freeman DJ, Pleasance S, Watson P, Moore RA, Cochrane K, et al. Co-occurrence of anaerobic bacteria in colorectal carcinomas. Microbiome. 2013;1(1):16.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 39.

    Jang JY, Song IS, Baek KJ, Choi Y, Ji S. Immunologic characteristics of human gingival fibroblasts in response to oral bacteria. Journal of periodontal research. 2017;52(3):447–57.

    CAS 
    PubMed 

    Google Scholar
     

  • 40.

    Trikha M, Corringham R, Klein B, Rossi JF. Targeted anti-interleukin-6 monoclonal antibody therapy for cancer: a review of the rationale and clinical evidence. Clinical cancer research : an official journal of the American Association for Cancer Research. 2003;9(13):4653–65.

    CAS 

    Google Scholar
     

  • 41.

    Tanaka T, Narazaki M, Kishimoto T. IL-6 in inflammation, immunity, and disease. Cold Spring Harbor perspectives in biology. 2014;6(10):a016295.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 42.

    Chan LC, Li CW, Xia W, Hsu JM, Lee HH, Cha JH, et al. IL-6/JAK1 pathway drives PD-L1 Y112 phosphorylation to promote cancer immune evasion. The Journal of clinical investigation. 2019;129(8):3324–38.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 43.

    Calcinotto A, Brevi A, Chesi M, Ferrarese R, Garcia Perez L, Grioni M, et al. Microbiota-driven interleukin-17-producing cells and eosinophils synergize to accelerate multiple myeloma progression. Nature communications. 2018;9(1):4832.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 44.

    Zhang M, Fan X, Fang B, Zhu C, Zhu J, Ren F. Effects of Lactobacillus salivarius Ren on cancer prevention and intestinal microbiota in 1, 2-dimethylhydrazine-induced rat model. Journal of microbiology (Seoul, Korea). 2015;53(6):398–405.


    Google Scholar
     

  • 45.

    Myles IA, Earland NJ, Anderson ED, Moore IN, Kieh MD, Williams KW, et al. First-in-human topical microbiome transplantation with Roseomonas mucosa for atopic dermatitis. JCI Insight. 2018;3(9):e120608.

  • 46.

    Colliou N, Ge Y, Sahay B, Gong M, Zadeh M, Owen JL, et al. Commensal Propionibacterium strain UF1 mitigates intestinal inflammation via Th17 cell regulation. The Journal of clinical investigation. 2017;127(11):3970–86.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 47.

    Wu P, Chen Y, Zhao J, Zhang G, Chen J, Wang J, et al. Urinary Microbiome and Psychological Factors in Women with Overactive Bladder. Frontiers in cellular and infection microbiology. 2017;7:488.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 48.

    Inman BA, Sebo TJ, Frigola X, Dong H, Bergstralh EJ, Frank I, et al. PD-L1 (B7-H1) expression by urothelial carcinoma of the bladder and BCG-induced granulomata: associations with localized stage progression. Cancer. 2007;109(8):1499–505.

    CAS 
    PubMed 

    Google Scholar
     

  • 49.

    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nature methods. 2010;7(5):335–6.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 50.

    Zhang J, Liu YX, Zhang N, Hu B, Jin T, Xu H, et al. NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nature biotechnology. 2019;37(6):676–84.

    CAS 
    PubMed 

    Google Scholar
     

  • 51.

    Magoč T, Salzberg SL. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics (Oxford, England). 2011;27(21):2957–63.


    Google Scholar
     

  • 52.

    Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature methods. 2013;10(10):996–8.

    CAS 
    PubMed 

    Google Scholar
     

  • 53.

    Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016;4:e2584.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 54.

    Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics (Oxford, England). 2010;26(19):2460–1.

    CAS 

    Google Scholar
     

  • 55.

    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic acids research. 2013;41(Database:issue):D590-596.


    Google Scholar
     

  • 56.

    DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Applied and environmental microbiology. 2006;72(7):5069–72.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 57.

    Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and environmental microbiology. 2007;73(16):5261–7.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 58.

    Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. Metagenomic biomarker discovery and explanation. Genome biology. 2011;12(6):R60.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 59.

    Chong J, Liu P, Zhou G, Xia J. Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data. Nature protocols. 2020;15(3):799–821.

    CAS 
    PubMed 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)