• 1.

    de Fuente J, Antunes S, Bonnet S, Cabezas-Cruz A, Domingos AG, Estrada-Peña A, Johnson N, Kocan KM, Mansfield KL, Nijhof AM, Papa A, Rudenko N, Villar M, Alberdi P, Torina A, Ayllón N, Vancova M, Golovchenko M, Grubhoffer L, Caracappa S, Fooks AR, Gortazar C, Rego ROM. Tick-pathogen interactions and vector competence: identification of molecular drivers for tick-borne diseases. Front Cell Infect Microbiol. 2017. https://doi.org/10.3389/fcimb.2017.00114.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 2.

    Lee H, Halverson S, Ezinwa N. Mosquito-Borne Diseases. Primary Care: Clinics in Office Practice. 2018;45(3):393–407. https://doi.org/10.1016/j.pop.2018.05.001.

    Article 
    PubMed 

    Google Scholar
     

  • 3.

    Serafim TD, Coutinho-Abreu IV, Dey R, Kissinger R, Valenzuela JG, Oliveira F, Kamhawi S. Leishmaniasis: The Act of Transmission. Trends Parasitol. 2021;37(11):976–87. https://doi.org/10.1016/j.pt.2021.07.003.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 4.

    Hamzaoui BE, Zurita A, Cutillas C, Parola P. Fleas and Flea-Borne Diseases of North Africa. Acta Trop. 2020;211: 105627. https://doi.org/10.1016/j.actatropica.2020.105627.

    Article 
    PubMed 

    Google Scholar
     

  • 5.

    Sonenshine DE, Simo L. Biology and Molecular Biology of Ixodes scapularis. In: Lyme Disease and Relapsing Fever Spirochetes: Genomics, Molecular Biology, Host Interactions and Disease Pathogenesis; Caister Academic Press, 2021. https://doi.org/10.21775/9781913652616.12.

  • 6.

    Gabrieli P, Caccia S, Varotto-Boccazzi I, Arnoldi I, Barbieri G, Comandatore F, Epis S. Mosquito trilogy: microbiota, immunity and pathogens, and their implications for the control of disease transmission. Front Microbiol. 2021;12: 630438. https://doi.org/10.3389/fmicb.2021.630438.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 7.

    Narasimhan S, Fikrig E. Tick microbiome: the force within. Trends Parasitol. 2015;31(7):315–23. https://doi.org/10.1016/j.pt.2015.03.010.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 8.

    Wu-Chuang A, Hodžić A, Mateos-Hernández L, Estrada-Peña A, Obregon D, Cabezas-Cruz A. Current debates and advances in tick microbiome research. Curr Res Parasitol Vector-Borne Diseases. 2021;1: 100036. https://doi.org/10.1016/j.crpvbd.2021.100036.

    Article 

    Google Scholar
     

  • 9.

    Duron O, Gottlieb Y. Convergence of nutritional symbioses in obligate blood feeders. Trends Parasitol. 2020;36(10):816–25. https://doi.org/10.1016/j.pt.2020.07.007.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 10.

    Zhong Z, Zhong T, Peng Y, Zhou X, Wang Z, Tang H, Wang J. Symbiont-regulated serotonin biosynthesis modulates tick feeding activity. Cell Host Microbe. 2021;29(10):1545-1557.e4. https://doi.org/10.1016/j.chom.2021.08.011.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 11.

    Obregón D, Bard E, Abrial D, Estrada-Peña A, Cabezas-Cruz A. Sex-specific linkages between taxonomic and functional profiles of tick gut microbiomes. Front Cell Infect Microbiol. 2019;9:298. https://doi.org/10.3389/fcimb.2019.00298.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 12.

    Wang Y, Hoon Eum J, Harrison R, Valzania L, Yang X, Johnson J, Huck D, Brown M, Strand M. Riboflavin instability is a key factor underlying the requirement of a gut microbiota for mosquito development. Proc Natl Acad Sci. 2021;118(15):e2101080118. https://doi.org/10.1073/pnas.2101080118.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 13.

    Michalkova V, Benoit JB, Weiss BL, Attardo GM, Aksoy S. Vitamin B6 generated by obligate symbionts is critical for maintaining proline homeostasis and fecundity in tsetse flies. Appl Environ Microbiol. 2014;80(18):5844–53. https://doi.org/10.1128/AEM.01150-14.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 14.

    Estrada-Peña A, Cabezas-Cruz A, Obregón D. Behind taxonomic variability: the functional redundancy in the tick microbiome. Microorganisms. 2020;8(11):1829. https://doi.org/10.3390/microorganisms8111829.

    CAS 
    Article 
    PubMed Central 

    Google Scholar
     

  • 15.

    Estrada-Peña A, Cabezas-Cruz A, Obregón D. Resistance of tick gut microbiome to anti-tick vaccines, pathogen infection and antimicrobial peptides. Pathogens. 2020;9(4):309. https://doi.org/10.3390/pathogens9040309.

    CAS 
    Article 
    PubMed Central 

    Google Scholar
     

  • 16.

    Romoli O, Schönbeck JC, Hapfelmeier S, Gendrin M. Production of germ-free mosquitoes via transient colonisation allows stage-specific investigation of host–microbiota interactions. Nat Commun. 2021;12:942. https://doi.org/10.1038/s41467-021-21195-3.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 17.

    Hajkazemian M, Bossé C, Mozūraitis R, Emami SN. Battleground midgut: The cost to the mosquito for hosting the malaria parasite. Biol Cell. 2021;113(2):79–94. https://doi.org/10.1111/boc.202000039.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 18.

    Wang M, An Y, Gao L, Dong S, Zhou X, Feng Y, Wang P, Dimopoulos G, Tang H, Wang J. Glucose-mediated proliferation of a gut commensal bacterium promotes Plasmodium infection by increasing mosquito midgut pH. Cell Rep. 2021;35(3): 108992. https://doi.org/10.1016/j.celrep.2021.108992.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 19.

    Bando H, Okado K, Guelbeogo WM, Badolo A, Aonuma H, Nelson B, Fukumoto S, Xuan X, Sagnon N, Kanuka H. Intra-specific diversity of Serratia marcescens in Anopheles Mosquito midgut defines plasmodium transmission capacity. Sci Rep. 2013;3(1):1641. https://doi.org/10.1038/srep01641.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Shaw WR, Catteruccia F. Vector biology meets disease control: using basic research to fight vector-borne diseases. Nat Microbiol. 2019;4(1):20–34. https://doi.org/10.1038/s41564-018-0214-7.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 21.

    Gendrin M, Rodgers FH, Yerbanga RS, Ouédraogo JB, Basáñez M-G, Cohuet A, Christophides GK. Antibiotics in ingested human blood affect the mosquito microbiota and capacity to transmit malaria. Nat Commun. 2015;6(1):5921. https://doi.org/10.1038/ncomms6921.

    Article 
    PubMed 

    Google Scholar
     

  • 22.

    Gendrin M, Yerbanga RS, Ouedraogo JB, Lefèvre T, Cohuet A, Christophides GK. Differential effects of azithromycin, doxycycline, and cotrimoxazole in ingested blood on the vectorial capacity of malaria mosquitoes. Open Forum Infect Dis. 2016;3(2):ofw074. https://doi.org/10.1093/ofid/ofw074.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 23.

    Gall CA, Reif KE, Scoles GA, Mason KL, Mousel M, Noh SM, Brayton KA. The bacterial microbiome of Dermacentor andersoni ticks influences pathogen susceptibility. ISME J. 2016;10(8):1846–55. https://doi.org/10.1038/ismej.2015.266.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    Narasimhan S, Swei A, Abouneameh S, Pal U, Pedra JHF, Fikrig E. Grappling with the tick microbiome. Trends Parasitol. 2021;37(8):722–33. https://doi.org/10.1016/j.pt.2021.04.004.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 25.

    Mateos-Hernández L, Obregón D, Maye J, Borneres J, Versille N, de la Fuente J, Estrada-Peña A, Hodžić A, Šimo L, Cabezas-Cruz A. Anti-tick microbiota vaccine impacts Ixodes ricinus performance during feeding. Vaccines. 2020;8(4):702. https://doi.org/10.3390/vaccines8040702.

    CAS 
    Article 
    PubMed Central 

    Google Scholar
     

  • 26.

    Mateos-Hernández L, Obregón D, Wu-Chuang A, Maye J, Bornères J, Versillé N, de la Fuente J, Díaz-Sánchez S, Bermúdez-Humarán LG, Torres-Maravilla E, Estrada-Peña A, Hodžić A, Šimo L, Cabezas-Cruz A. Anti-microbiota vaccines modulate the tick microbiome in a taxon-specific manner. Front Immunol. 2021;12: 704621. https://doi.org/10.3389/fimmu.2021.704621.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 27.

    Wu-Chuang A, Obregon D, Mateos-Hernández L, Cabezas-Cruz A. Anti-tick microbiota vaccines: how can this actually work? Biologia. 2021. https://doi.org/10.1007/s11756-021-00818-6.

    Article 

    Google Scholar
     

  • 28.

    Narasimhan S, Rajeevan N, Liu L, Zhao YO, Heisig J, Pan J, Eppler-Epstein R, DePonte K, Fish D, Fikrig E. Gut Microbiota of the Tick Vector Ixodes scapularis Modulate colonization of the lyme disease spirochete. Cell Host Microbe. 2014;15(1):58–71. https://doi.org/10.1016/j.chom.2013.12.001.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 29.

    Narasimhan S, Schuijt TJ, Abraham NM, Rajeevan N, Coumou J, Graham M, Robson A, Wu M-J, Daffre S, Hovius JW, Fikrig E. Modulation of the tick gut milieu by a secreted tick protein favors Borrelia burgdorferi Colonization. Nat Commun. 2017;8(1):184. https://doi.org/10.1038/s41467-017-00208-0.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 30.

    Abraham NM, Liu L, Jutras BL, Yadav AK, Narasimhan S, Gopalakrishnan V, Ansari JM, Jefferson KK, Cava F, Jacobs-Wagner C, Fikrig E. Pathogen-mediated manipulation of arthropod microbiota to promote infection. Proc Natl Acad Sci USA. 2017;114(5):E781–90. https://doi.org/10.1073/pnas.1613422114.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 31.

    Heisig M, Abraham NM, Liu L, Neelakanta G, Mattessich S, Sultana H, Shang Z, Ansari JM, Killiam C, Walker W, Cooley L, Flavell RA, Agaisse H, Fikrig E. Antivirulence properties of an antifreeze protein. Cell Rep. 2014;9(2):417–24. https://doi.org/10.1016/j.celrep.2014.09.034.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 32.

    Brinkerhoff RJ, Clark C, Ocasio K, Gauthier DT, Hynes WL. Factors Affecting the Microbiome of Ixodes scapularis and Amblyomma americanum. PLoS ONE. 2020;15(5): e0232398. https://doi.org/10.1371/journal.pone.0232398.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Chauhan G, McClure J, Hekman J, Marsh PW, Bailey JA, Daniels RF, Genereux DP, Karlsson EK. Combining citizen science and genomics to investigate tick, pathogen, and commensal microbiome at single-tick resolution. Front Genet. 2020;10:1322. https://doi.org/10.3389/fgene.2019.01322.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 34.

    Huang W, Wang S, Jacobs-Lorena M. Use of microbiota to fight mosquito-borne disease. Front Genet. 2020;11:196. https://doi.org/10.3389/fgene.2020.00196.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 35.

    Tchioffo MT, Boissière A, Churcher TS, Abate L, Gimonneau G, Nsango SE, Awono-Ambéné PH, Christen R, Berry A, Morlais I. Modulation of malaria infection in Anopheles gambiae mosquitoes exposed to natural midgut bacteria. PLoS ONE. 2013;8(12): e81663. https://doi.org/10.1371/journal.pone.0081663.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 36.

    Cirimotich CM, Ramirez JL, Dimopoulos G. Native microbiota shape insect vector competence for human pathogens. Cell Host Microbe. 2011;10(4):307–10. https://doi.org/10.1016/j.chom.2011.09.006.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 37.

    Wu P, Sun P, Nie K, Zhu Y, Shi M, Xiao C, Liu H, Liu Q, Zhao T, Chen X, Zhou H, Wang P, Cheng G. A gut commensal bacterium promotes mosquito permissiveness to arboviruses. Cell Host Microbe. 2019;25(1):101-112.e5. https://doi.org/10.1016/j.chom.2018.11.004.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 38.

    Dong Y, Manfredini F, Dimopoulos G. Implication of the mosquito midgut microbiota in the defense against malaria parasites. PLoS Pathog. 2009;5(5): e1000423. https://doi.org/10.1371/journal.ppat.1000423.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 39.

    Meister S, Agianian B, Turlure F, Relógio A, Morlais I, Kafatos FC, Christophides GK. Anopheles gambiae PGRPLC-mediated defense against bacteria modulates infections with malaria parasites. PLoS Pathog. 2009;5(8): e1000542. https://doi.org/10.1371/journal.ppat.1000542.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 40.

    Garver LS, Dong Y, Dimopoulos G. Caspar controls resistance to Plasmodium falciparum in diverse anopheline species. PLoS Pathog. 2009;5(3): e1000335. https://doi.org/10.1371/journal.ppat.1000335.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 41.

    Azambuja P, Feder D, Garcia ES. Isolation of serratia marcescens in the midgut of rhodnius prolixus: impact on the establishment of the parasite Trypanosoma cruzi in the Vector. Exp Parasitol. 2004;107(1–2):89–96. https://doi.org/10.1016/j.exppara.2004.04.007.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 42.

    Fieck A, Hurwitz I, Kang AS, Durvasula R. Trypanosoma Cruzi: synergistic cytotoxicity of multiple amphipathic anti-microbial peptides to T. cruzi and potential bacterial hosts. Exp Parasitol. 2010;125(4):342–7. https://doi.org/10.1016/j.exppara.2010.02.016.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 43.

    Frentiu FD, Zakir T, Walker T, Popovici J, Pyke AT, van den Hurk A, McGraw EA, O’Neill SL. Limited h Aedes aegypti mosquitoes infected with Wolbachia. PLoS Negl Trop Dis. 2014;8(2): e2688. https://doi.org/10.1371/journal.pntd.0002688.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 44.

    Schmidt TL, Barton NH, Rašić G, Turley AP, Montgomery BL, Iturbe-Ormaetxe I, Cook PE, Ryan PA, Ritchie SA, Hoffmann AA, O’Neill SL, Turelli M. Local Introduction and Heterogeneous Spatial Spread of Dengue-Suppressing Wolbachia through an Urban Population of Aedes aegypti. PLoS Biol. 2017;15(5): e2001894. https://doi.org/10.1371/journal.pbio.2001894.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 45.

    Beier MS, Pumpuni CB, Beier JC, Davis JR. Effects of para-aminobenzoic acid, insulin, and gentamicin on Plasmodium falciparum Development in Anopheline Mosquitoes (Diptera: Culicidae). J Med Entomol. 1994;31(4):561–5. https://doi.org/10.1093/jmedent/31.4.561.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 46.

    Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Lu G, Pyke AT, Hedges LM, Rocha BC, Hall-Mendelin S, Day A, Riegler M, Hugo LE, Johnson KN, Kay BH, McGraw EA, van den Hurk AF, Ryan PA, O’Neill SL. A Wolbachia Symbiont in Aedes aegypti limits infection with dengue, chikungunya, and plasmodium. Cell. 2009;139(7):1268–78. https://doi.org/10.1016/j.cell.2009.11.042.

    Article 
    PubMed 

    Google Scholar
     

  • 47.

    Walker T, Johnson PH, Moreira LA, Iturbe-Ormaetxe I, Frentiu FD, McMeniman CJ, Leong YS, Dong Y, Axford J, Kriesner P, Lloyd AL, Ritchie SA, O’Neill SL, Hoffmann AA. The WMel Wolbachia Strain Blocks Dengue and Invades Caged Aedes aegypti Populations. Nature. 2011;476(7361):450–3. https://doi.org/10.1038/nature10355.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 48.

    Landmann F, Cossart P, Craig RR, Sansonetti P. The Wolbachia Endosymbionts. Am Soc Microbiol. 2019;7:2. https://doi.org/10.1128/microbiolspec.BAI-0018-2019.

    Article 

    Google Scholar
     

  • 49.

    Dutra HLC, Rocha MN, Dias FBS, Mansur SB, Caragata EP, Moreira LA. Wolbachia blocks currently circulating zika virus isolates in Brazilian Aedes aegypti Mosquitoes. Cell Host Microbe. 2016;19(6):771–4. https://doi.org/10.1016/j.chom.2016.04.021.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 50.

    Ackerman S, Clare FB, McGill TW, Sonenshine DE. Passage of host serum components, including antibody, across the digestive tract of Dermacentor variabilis (Say). J Parasitol. 1981;67(5):737. https://doi.org/10.2307/3280459.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 51.

    Ben-Yakir D, Fox CJ, Homer JT, Barker RW. Quantification of host immunoglobulin in the hemolymph of ticks. J Parasitol. 1987;73(3):669. https://doi.org/10.2307/3282157.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 52.

    Wang H, Nuttall PA. Excretion of host immunoglobulin in tick saliva and detection of igg-binding proteins in tick haemolymph and salivary glands. Parasitology. 1994;109(4):525–30. https://doi.org/10.1017/S0031182000080781.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 53.

    Willadsen P. Novel vaccines for ectoparasites. Vet Parasitol. 1997;71(2–3):209–22. https://doi.org/10.1016/S0304-4017(97)00028-9.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 54.

    Rathinavelu S, Broadwater A, de Silva AM. Does Host Complement Kill Borrelia burgdorferi within Ticks? Infect Immun. 2003;71(2):822–9. https://doi.org/10.1128/IAI.71.2.822-829.2003.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 55.

    Galay RL, Matsuo T, Hernandez EP, Talactac MR, Kusakisako K, Umemiya-Shirafuji R, Mochizuki M, Fujisaki K, Tanaka T. Immunofluorescent detection in the ovary of host antibodies against a secretory ferritin injected into Female Haemaphysalis longicornis Ticks. Parasitol Int. 2018;67(2):119–22. https://doi.org/10.1016/j.parint.2017.10.006.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 56.

    Vaughan JA. Kinetics of ingested host immunoglobulin g in hemolymph and whole body homogenates during nymphal development of Dermacentor variabilis and Ixodes scapularis Ticks (Acari: Ixodidae). Exp Appl Acarol. 2002;27(4):329–40. https://doi.org/10.1023/A:1023347930746.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 57.

    Chinzei Y, Minoura H. Host Immunoglobulin G Titre and Antibody Activity in Haemolymph of the Tick Ornithodoros moubata. Med Vet Entomol. 1987;1(4):409–16. https://doi.org/10.1111/j.1365-2915.1987.tb00371.x.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 58.

    Hatfield PR. Detection and localization of antibody ingested with a mosquito bloodmeal. Med Vet Entomol. 1988;2(4):339–45. https://doi.org/10.1111/j.1365-2915.1988.tb00206.x.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 59.

    Lackie AM, Gavin S. Uptake and persistence of ingested antibody in the mosquito Anopheles stephensi. Med Vet Entomol. 1989;3(3):225–30. https://doi.org/10.1111/j.1365-2915.1989.tb00220.x.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 60.

    Tesh RB, Chen W-R, Catuccio D. Survival of Albumin, IgG, IgM, and Complement (C3) in human blood after ingestion by Aedes albopictus and Phlebotomus papatasi. Am J Trop Med Hyg. 1988;39(1):127–30. https://doi.org/10.4269/ajtmh.1988.39.127.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 61.

    Saab NAA, Nascimento AAS, Queiroz DC, da Cunha IGM, Filho AAP, D’Ávila Pessoa GC, Koerich LB, Pereira MH, SantAnna MRV, Araújo RN, Gontijo NF. How Lutzomyia longipalpis Deals with the Complement System Present in the Ingested Blood: The Role of Soluble Inhibitors and the Adsorption of Factor H by Midgut. J Insect Physiol. 2020;120:103992. https://doi.org/10.1016/j.jinsphys.2019.103992.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 62.

    Nogge G, Giannetti M. Specific Antibodies: A Potential Insecticide. Science. 1980;209(4460):1028–9. https://doi.org/10.1126/science.7403865.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 63.

    Vaughan JA, Azad AF. Passage of host immunoglobulin G from blood meal into hemolymph of selected mosquito species (Diptera: Culicidae). J Med Entomol. 1988;25(6):472–4. https://doi.org/10.1093/jmedent/25.6.472.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 64.

    Margos G, Navarette S, Butcher G, Davies A, Willers C, Sinden RE, Lachmann PJ. Interaction between Host Complement and Mosquito-Midgut-Stage Plasmodium berghei. Infect Immun. 2001;69(8):5064–71. https://doi.org/10.1128/IAI.69.8.5064-5071.2001.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 65.

    Gough JM, Kemp DH. Localization of a Low Abundance Membrane Protein (Bm86) on the Gut Cells of the Cattle Tick Boophilus microplus by Immunogold Labeling. J Parasitol. 1993;79(6):900–7.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 66.

    de la Fuente J, Moreno-Cid JA, Canales M, Villar M, de la Lastra JMP, Kocan KM, Galindo RC, Almazán C, Blouin EF. Targeting arthropod subolesin/akirin for the development of a universal vaccine for control of vector infestations and pathogen transmission. Vet Parasitol. 2011;181(1):17–22. https://doi.org/10.1016/j.vetpar.2011.04.018.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 67.

    Rodríguez-Mallon A, Encinosa PE, Méndez-Pérez L, Bello Y, Rodríguez Fernández R, Garay H, Cabrales A, Méndez L, Borroto C, Estrada MP. High Efficacy of a 20 amino Acid Peptide of the Acidic Ribosomal Protein P0 against the Cattle Tick. Rhipicephalus Microplus Ticks Tick-borne Dis. 2015;6(4):530–7. https://doi.org/10.1016/j.ttbdis.2015.04.007.

    Article 
    PubMed 

    Google Scholar
     

  • 68.

    Rodríguez-Mallon A, Fernández E, Encinosa PE, Bello Y, Méndez-Pérez L, Ruiz LC, Pérez D, González M, Garay H, Reyes O, Méndez L, Estrada MP. A novel tick antigen shows high vaccine efficacy against the dog tick Rhipicephalus sanguineus. Vaccine. 2012;30(10):1782–9. https://doi.org/10.1016/j.vaccine.2012.01.011.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 69.

    Meyers JI, Gray M, Foy BD. Mosquitocidal Properties of IgG Targeting the Glutamate-Gated Chloride Channel in Three Mosquito Disease Vectors (Diptera: Culicidae). J Exp Biol. 2015;218(10):1487–95. https://doi.org/10.1242/jeb.118596.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 70.

    Artigas-Jerónimo S, Villar M, Cabezas-Cruz A, Valdés JJ, Estrada-Peña A, Alberdi P, de la Fuente J. Functional evolution of subolesin/akirin. Front Physiol. 2018;9:1612. https://doi.org/10.3389/fphys.2018.01612.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 71.

    Kumar M, Kaur S, Kariu T, Yang X, Bossis I, Anderson JF, Pal U. Borrelia burgdorferi BBA52 is a potential target for transmission blocking lyme disease vaccine. Vaccine. 2011;29(48):9012–9. https://doi.org/10.1016/j.vaccine.2011.09.035.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 72.

    Tachibana M, Wu Y, Iriko H, Muratova O, MacDonald NJ, Sattabongkot J, Takeo S, Otsuki H, Torii M, Tsuboi T. N-Terminal Prodomain of Pfs230 synthesized using a cell-free system is sufficient to induce complement-dependent malaria transmission-blocking activity. Clin Vaccine Immunol. 2011;18(8):1343–50. https://doi.org/10.1128/CVI.05104-11.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 73.

    Chowdhury DR, Angov E, Kariuki T, Kumar N. A potent malaria transmission blocking vaccine based on codon harmonized full length Pfs48/45 expressed in Escherichia coli. PLoS ONE. 2009;4(7): e6352. https://doi.org/10.1371/journal.pone.0006352.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 74.

    Kapulu MC, Da DF, Miura K, Li Y, Blagborough AM, Churcher TS, Nikolaeva D, Williams AR, Goodman AL, Sangare I, Turner AV, Cottingham MG, Nicosia A, Straschil U, Tsuboi T, Gilbert SC, Long CA, Sinden RE, Draper SJ, Hill AVS, Cohuet A, Biswas S. Comparative assessment of transmission-blocking vaccine candidates against Plasmodium falciparum. Sci Rep. 2015;5(1):11193. https://doi.org/10.1038/srep11193.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 75.

    de Silva AM, Telford SR, Brunet LR, Barthold SW, Fikrig E. Borrelia Burgdorferi OspA is an arthropod-specific transmission-blocking lyme disease vaccine. J Exp Med. 1996;183(1):271–5. https://doi.org/10.1084/jem.183.1.271.

    Article 
    PubMed 

    Google Scholar
     

  • 76.

    Gipson CL, de Silva AM. Interactions of OspA Monoclonal Antibody C378 with Borrelia burgdorferi within Ticks. Infect Immun. 2005;73(3):1644–7. https://doi.org/10.1128/IAI.73.3.1644-1647.2005.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 77.

    Sinden RE. Developing transmission-blocking strategies for malaria control. PLoS Pathog. 2017;13(7): e1006336. https://doi.org/10.1371/journal.ppat.1006336.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 78.

    Matuschewski K, Mueller A-K. Vaccines against malaria – an update: anti-malaria vaccine development. FEBS J. 2007;274(18):4680–7. https://doi.org/10.1111/j.1742-4658.2007.05998.x.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 79.

    Vaughan JA, Do Rosario V, Leland P, Adjepong A, Light J, Woollett GR, Hollingdale MR, Azad AF. Plasmodium falciparum: ingested anti-sporozoite antibodies affect sporogony in Anopheles stephensi mosquitoes. Exp Parasitol. 1988;66(2):171–82. https://doi.org/10.1016/0014-4894(88)90088-4.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 80.

    Beier JC, Oster CN, Koros JK, Onyango FK, Githeko AK, Rowton E, Koech DK, Roberts CR. Effect of human circumsporozoite antibodies in Plasmodium-infected Anopheles (Diptera: Culicidae). J Med Entomol. 1989;26(6):547–53. https://doi.org/10.1093/jmedent/26.6.547.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 81.

    Carter R, Graves PM, Quakyi IA, Good MF. Restricted or absent immune responses in human populations to Plasmodium falciparum Gamete antigens that are targets of malaria transmission-blocking antibodies. J Exp Med. 1989;169(1):135–47. https://doi.org/10.1084/jem.169.1.135.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 82.

    Ben-Yakir D. Growth retardation of Rhodnius prolixus symbionts by immunizing host against Nocardia (Rhodococcus) Rhodnii. J Insect Physiol. 1987;33(6):379–83. https://doi.org/10.1016/0022-1910(87)90015-1.

    Article 

    Google Scholar
     

  • 83.

    Nogge G. Aposymbiotic Tsetse Flies, Glossina morsitans morsitans obtained by feeding on rabbits immunized specifically with symbionts. J Insect Physiol. 1978;24(4):299–304. https://doi.org/10.1016/0022-1910(78)90026-4.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 84.

    Noden BH, Vaughan JA, Pumpuni CB, Beier JC. Mosquito Ingestion of Antibodies against Mosquito Midgut Microbiota Improves Conversion of Ookinetes to Oocysts for Plasmodium falciparum, but Not P. yoelii. Parasitol Int. 2011;60(4):440–6. https://doi.org/10.1016/j.parint.2011.07.007.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 85.

    Salcedo-Porras N, Umaña-Diaz C, de Oliveira R, Lowenberger C. The role of bacterial symbionts in triatomines: an evolutionary perspective. Microorganisms. 2020;8(9):1438. https://doi.org/10.3390/microorganisms8091438.

    CAS 
    Article 
    PubMed Central 

    Google Scholar
     

  • 86.

    Kaaya GP, Alemu P. Further observations on survival and fertility of Glossina morsitans morsitans maintained on immunized rabbits. Int J Trop Insect Sci. 1984;5(05):443–6. https://doi.org/10.1017/S1742758400008808.

    Article 

    Google Scholar
     

  • 87.

    Burt A. Site-specific selfish genes as tools for the control and genetic engineering of natural populations. Proc R Soc Lond B. 2003;270(1518):921–8. https://doi.org/10.1098/rspb.2002.2319.

    CAS 
    Article 

    Google Scholar
     

  • 88.

    Steven B, Hyde J, LaReau JC, Brackney DE. The axenic and gnotobiotic mosquito: emerging models for microbiome host interactions. Front Microbiol. 2021;12: 714222. https://doi.org/10.3389/fmicb.2021.714222.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)