• 1.

    Pinheiro GC, Scheinberg MA, Aparecida da Silva M, Maciel S. Anti-cyclic citrullinated peptide antibodies in advanced rheumatoid arthritis. Ann Intern Med. 2003;139(3):234–5.

    PubMed 

    Google Scholar
     

  • 2.

    Quinn MA, Gough AK, Green MJ, Devlin J, Hensor EM, Greenstein A, et al. Anti-CCP antibodies measured at disease onset help identify seronegative rheumatoid arthritis and predict radiological and functional outcome. Rheumatology (Oxford). 2006;45(4):478–80.

    CAS 

    Google Scholar
     

  • 3.

    Kroot EJ, de Jong BA, van Leeuwen MA, Swinkels H, van den Hoogen FH, van’t Hof M, et al. The prognostic value of anti-cyclic citrullinated peptide antibody in patients with recent-onset rheumatoid arthritis. Arthritis Rheum. 2000;43(8):1831–5.

    CAS 
    PubMed 

    Google Scholar
     

  • 4.

    Ioan-Facsinay A, el-Bannoudi H, Scherer HU, van der Woude D, Menard HA, Lora M, et al. Anti-cyclic citrullinated peptide antibodies are a collection of anti-citrullinated protein antibodies and contain overlapping and non-overlapping reactivities. Ann Rheum Dis. 2011;70(1):188–93.

    CAS 
    PubMed 

    Google Scholar
     

  • 5.

    Aletaha D, Neogi T, Silman AJ, Funovits J, Felson DT, Bingham CO 3rd, et al. 2010 Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum. 2010;62(9):2569–81.


    Google Scholar
     

  • 6.

    Ossipova E, Cerqueira CF, Reed E, Kharlamova N, Israelsson L, Holmdahl R, et al. Affinity purified anti-citrullinated protein/peptide antibodies target antigens expressed in the rheumatoid joint. Arthritis Res Ther. 2014;16(4):R167.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 7.

    Trier NH, Houen G. Epitope Specificity of Anti-Citrullinated Protein Antibodies. Antibodies (Basel). 2017;6(1):5.


    Google Scholar
     

  • 8.

    Ge C, Holmdahl R. The structure, specificity and function of anti-citrullinated protein antibodies. Nat Rev Rheumatol. 2019;15(8):503–8.

    CAS 
    PubMed 

    Google Scholar
     

  • 9.

    Ménard HA. “ACPA” in Rheumatoid Arthritis: From Population-based Data to Personalized Medicine. J Rheumatol. 2015;42(5):733–5.

    PubMed 

    Google Scholar
     

  • 10.

    Tilvawala R, Nguyen SH, Maurais AJ, Nemmara VV, Nagar M, Salinger AJ, et al. The Rheumatoid Arthritis-Associated Citrullinome. Cell Chem Biol. 2018;25(6):691-704.e6.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 11.

    Conti V, Corbi G, Costantino M, De Bellis E, Manzo V, Sellitto C, et al. Biomarkers to Personalize the Treatment of Rheumatoid Arthritis: Focus on Autoantibodies and Pharmacogenetics. Biomolecules. 2020;10(12):1672.

    CAS 
    PubMed Central 

    Google Scholar
     

  • 12.

    Sebbag M, Moinard N, Auger I, Clavel C, Arnaud J, Nogueira L, et al. Epitopes of human fibrin recognized by the rheumatoid arthritis-specific autoantibodies to citrullinated proteins. Eur J Immunol. 2006;36(8):2250–63.

    CAS 
    PubMed 

    Google Scholar
     

  • 13.

    Cornillet M, Ajana S, Ruyssen-Witrand A, Constantin A, Degboé Y, Cantagrel A, et al. Autoantibodies to human citrullinated fibrinogen and their subfamilies to the α36-50Cit and β60-74Cit fibrin peptides similarly predict radiographic damages: a prospective study in the French ESPOIR cohort of very early arthritides. Rheumatology (Oxford). 2016;55(10):1859–70.

    CAS 

    Google Scholar
     

  • 14.

    Damgaard D, Senolt L, Nielsen MF, Pruijn GJ, Nielsen CH. Demonstration of extracellular peptidylarginine deiminase (PAD) activity in synovial fluid of patients with rheumatoid arthritis using a novel assay for citrullination of fibrinogen. Arthritis Res Ther. 2014;16(6):498.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    Rahmatullah MB, T. R. C. Improvements in the determination of urea using diacetyl monoxime; methods with and without deproteinisation. Clinica Chimica Acta. 1980;107(1–2):3–9.

  • 16.

    Senshu T, Sato T, Inoue T, Akiyama K, Asaga H. Detection of citrulline residues in deiminated proteins on polyvinylidene difluoride membrane. Anal Biochem. 1992;203(1):94–100.

    CAS 
    PubMed 

    Google Scholar
     

  • 17.

    Verheul MK, van Veelen PA, van Delft MAM, de Ru A, Janssen GMC, Rispens T, et al. Pitfalls in the detection of citrullination and carbamylation. Autoimmun Rev. 2018;17(2):136–41.

    CAS 
    PubMed 

    Google Scholar
     

  • 18.

    Wang X, Swensen AC, Zhang T, Piehowski PD, Gaffrey MJ, Monroe ME, et al. Accurate Identification of Deamidation and Citrullination from Global Shotgun Proteomics Data Using a Dual-Search Delta Score Strategy. J Proteome Res. 2020;19(4):1863–72.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 19.

    Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, et al. Circos: an information aesthetic for comparative genomics. Genome Res. 2009;19(9):1639–45.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Hawass NE. Comparing the sensitivities and specificities of two diagnostic procedures performed on the same group of patients. Br J Radiol. 1997;70(832):360–6.

    CAS 
    PubMed 

    Google Scholar
     

  • 21.

    Harlow L, Rosas IO, Gochuico BR, Mikuls TR, Dellaripa PF, Oddis CV, et al. Identification of citrullinated hsp90 isoforms as novel autoantigens in rheumatoid arthritis-associated interstitial lung disease. Arthritis Rheum. 2013;65(4):869–79.

    CAS 

    Google Scholar
     

  • 22.

    Brown J, Reading SJ, Jones S, Fitchett CJ, Howl J, Martin A, et al. Critical evaluation of ECV304 as a human endothelial cell model defined by genetic analysis and functional responses: a comparison with the human bladder cancer derived epithelial cell line T24/83. Lab Invest. 2000;80(1):37–45.

    CAS 
    PubMed 

    Google Scholar
     

  • 23.

    Suda K, Rothen-Rutishauser B, Gunthert M, Wunderli-Allenspach H. Phenotypic characterization of human umbilical vein endothelial (ECV304) and urinary carcinoma (T24) cells: endothelial versus epithelial features. In Vitro Cell Dev Biol Anim. 2001;37(8):505–14.

    CAS 
    PubMed 

    Google Scholar
     

  • 24.

    Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015;347(6220):1260419.

    PubMed 

    Google Scholar
     

  • 25.

    Damoiseaux J, Andrade LEC, Carballo OG, Conrad K, Francescantonio PLC, Fritzler MJ, et al. Clinical relevance of HEp-2 indirect immunofluorescent patterns: the International Consensus on ANA patterns (ICAP) perspective. Ann Rheum Dis. 2019;78(7):879–89.

    CAS 
    PubMed 

    Google Scholar
     

  • 26.

    Maksymowych WP, Marotta A. 14–3–3η: a novel biomarker platform for rheumatoid arthritis. Clin Exp Rheumatol. 2014;32(5 Suppl 85):S-35–9.

  • 27.

    Chakravarti R, Gupta K, Swain M, Willard B, Scholtz J, Svensson LG, et al. 14-3-3 in Thoracic Aortic Aneurysms: Identification of a Novel Autoantigen in Large Vessel Vasculitis. Arthritis Rheumatol. 2015;67(7):1913–21.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Goeb V, Thomas-L’Otellier M, Daveau R, Charlionet R, Fardellone P, Le Loet X, et al. Candidate autoantigens identified by mass spectrometry in early rheumatoid arthritis are chaperones and citrullinated glycolytic enzymes. Arthritis Res Ther. 2009;11(2):R38.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 29.

    Routsias JG, Tzioufas AG, Sakarellos-Daitsiotis M, Sakarellos C, Moutsopoulos HM. Calreticulin synthetic peptide analogues: anti-peptide antibodies in autoimmune rheumatic diseases. Clin Exp Immunol. 1993;91(3):437–41.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 30.

    Eggleton P, Ward FJ, Johnson S, Khamashta MA, Hughes GR, Hajela VA, et al. Fine specificity of autoantibodies to calreticulin: epitope mapping and characterization. Clin Exp Immunol. 2000;120(2):384–91.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 31.

    Ling S, Cline EN, Haug TS, Fox DA, Holoshitz J. Citrullinated calreticulin potentiates rheumatoid arthritis shared epitope signaling. Arthritis Rheum. 2013;65(3):618–26.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 32.

    Ukaji F, Kitajima I, Kubo T, Shimizu C, Nakajima T, Maruyama I. Serum samples of patients with rheumatoid arthritis contain a specific autoantibody to “denatured” aldolase A in the osteoblast-like cell line, MG-63. Ann Rheum Dis. 1999;58(3):169–74.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Xiang Y, Sekine T, Nakamura H, Imajoh-Ohmi S, Fukuda H, Nishioka K, et al. Proteomic surveillance of autoimmunity in osteoarthritis: identification of triosephosphate isomerase as an autoantigen in patients with osteoarthritis. Arthritis Rheum. 2004;50(5):1511–21.

    CAS 
    PubMed 

    Google Scholar
     

  • 34.

    Zhou J, Feng L, Zhang H, Wang T, Cui L. Evaluation of the Value of Anti-Citrullinated α-enolase Peptide 1 Antibody in the Diagnosis of Rheumatoid Arthritis. Ann Clin Lab Sci. 2019;49(4):503–6.

    CAS 
    PubMed 

    Google Scholar
     

  • 35.

    Yang J, Zou L, Yang Y, Yuan J, Hu Z, Liu H, et al. Superficial vimentin mediates DENV-2 infection of vascular endothelial cells. Sci Rep. 2016;6:38372.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 36.

    Boire G, Cossette P, de Brum-Fernandes AJ, Liang P, Niyonsenga T, Zhou ZJ, et al. Anti-Sa antibodies and antibodies against cyclic citrullinated peptide are not equivalent as predictors of severe outcomes in patients with recent-onset polyarthritis. Arthritis Res Ther. 2005;7(3):R592-603.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 37.

    Keyszer GM, Heer AH, Kriegsmann J, Geiler T, Trabandt A, Keysser M, et al. Comparative analysis of cathepsin L, cathepsin D, and collagenase messenger RNA expression in synovial tissues of patients with rheumatoid arthritis and osteoarthritis, by in situ hybridization. Arthritis Rheum. 1995;38(7):976–84.

    CAS 
    PubMed 

    Google Scholar
     

  • 38.

    Peretti M, Angelini M, Savalli N, Florio T, Yuspa SH, Mazzanti M. Chloride channels in cancer: Focus on chloride intracellular channel 1 and 4 (CLIC1 AND CLIC4) proteins in tumor development and as novel therapeutic targets. Biochim Biophys Acta. 2015;1848(10 Pt B):2523–31.

    CAS 
    PubMed 

    Google Scholar
     

  • 39.

    Ulanet DB, Wigley FM, Gelber AC, Rosen A. Autoantibodies against B23, a nucleolar phosphoprotein, occur in scleroderma and are associated with pulmonary hypertension. Arthritis Rheum. 2003;49(1):85–92.

    PubMed 

    Google Scholar
     

  • 40.

    Li XZ, McNeilage LJ, Whittingham S. Autoantibodies to the major nucleolar phosphoprotein B23 define a novel subset of patients with anticardiolipin antibodies. Arthritis Rheum. 1989;32(9):1165–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 41.

    Faé KC, Diefenbach da Silva D, Bilate AM, Tanaka AC, Pomerantzeff PM, Kiss MH, et al. PDIA3, HSPA5 and vimentin, proteins identified by 2-DE in the valvular tissue, are the target antigens of peripheral and heart infiltrating T cells from chronic rheumatic heart disease patients. J Autoimmun. 2008;31(2):136–41.

    PubMed 

    Google Scholar
     

  • 42.

    Lovato L, Cianti R, Gini B, Marconi S, Bianchi L, Armini A, et al. Transketolase and 2’,3’-cyclic-nucleotide 3’-phosphodiesterase type I isoforms are specifically recognized by IgG autoantibodies in multiple sclerosis patients. Mol Cell Proteomics. 2008;7(12):2337–49.

    CAS 
    PubMed 

    Google Scholar
     

  • 43.

    Guzian MC, Carrier N, Cossette P, de Brum-Fernandes AJ, Liang P, Ménard HA, et al. Outcomes in recent-onset inflammatory polyarthritis differ according to initial titers, persistence over time, and specificity of the autoantibodies. Arthritis Care Res (Hoboken). 2010;62(11):1624–32.


    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)