• 1.

    Carbone L. Estimating mouse and rat use in American laboratories by extrapolation from Animal Welfare Act-regulated species. Scientific Reports. 2021;11(1):1–6.


    Google Scholar
     

  • 2.

    Canadian Council on Animal Care. CCAC animal data report. 2019:2019.

  • 3.

    European Commission. 2019 report on the statistics on the use of animals for scientific purposes in the Member States of the European Union in 2015-2017. Report from the Commission to the European Parliament and the Council. 2019.

  • 4.

    Wieschowski S, Biernot S, Deutsch S, Glage S, Bleich A, Tolba R, et al. Publication rates in animal research. Extent and characteristics of published and non-published animal studies followed up at two German university medical centres. PloS one. 2019;14(11):e0223758.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 5.

    Baker M. 1,500 scientists lift the lid on reproducibility. Nature News. 2016;533(7604):452.

    CAS 

    Google Scholar
     

  • 6.

    Freedman LP, Cockburn IM, Simcoe TS. The economics of reproducibility in preclinical research. PLOS Biology. 2015;13(6):e1002165.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 7.

    Begley CG, Ellis LM. Raise standards for preclinical cancer research. Nature. 2012;483(7391):531–3.

    CAS 
    PubMed 

    Google Scholar
     

  • 8.

    Hartshorne J, Schachner A. Tracking replicability as a method of post-publication open evaluation. Frontiers in Computational Neuroscience. 2012;6(8).

  • 9.

    U.S. Food and Drug Administration. Challenge and opportunity on the critical path to new medical products. 2004.


    Google Scholar
     

  • 10.

    Geerts H. Of mice and men: bridging the translational disconnect in CNS drug discovery. CNS drugs. 2009;23(11):915–26.

    CAS 
    PubMed 

    Google Scholar
     

  • 11.

    Perrin S. Preclinical research: Make mouse studies work. Nature. 2014;507(7493):423–5.

    PubMed 

    Google Scholar
     

  • 12.

    MacLellan A, Adcock A, Mason GJ. Behavioral Biology of Mice. In: Coleman K, Schapiro SJ, editors. Behavioral biology of laboratory animals. Abingdon: Routledge; 2021.


    Google Scholar
     

  • 13.

    Cloutier S. Behavioral Biology of Rats. In: Coleman K, Schapiro SJ, editors. Behavioral biology of laboratory animals. Abingdon: Routledge; 2021.


    Google Scholar
     

  • 14.

    Bradshaw AL, Poling A. Choice by rats for enriched versus standard home cages: plastic pipes, wood platforms, wood chips, and paper towels as enrichment items. Journal of the experimental analysis of behavior. 1991;55(2):245–50.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    Van de Weerd H, Van Loo P, Van Zutphen L, Koolhaas J, Baumans V. Preferences for nesting material as environmental enrichment for laboratory mice. Laboratory animals. 1997;31(2):133–43.

    PubMed 

    Google Scholar
     

  • 16.

    Hess SE, Rohr S, Dufour BD, Gaskill BN, Pajor EA, Garner JP. Home improvement: C57BL/6 J mice given more naturalistic nesting materials build better nests. Journal of the American Association for Laboratory Animal Science : JAALAS. 2008;47(6):25–31.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 17.

    Sherwin C, Haug E, Terkelsen N, Vadgama M. Studies on the motivation for burrowing by laboratory mice. Applied Animal Behaviour Science. 2004;88(3-4):343–58.


    Google Scholar
     

  • 18.

    Makowska IJ, Weary DM. The importance of burrowing, climbing and standing upright for laboratory rats. R Soc Open Sci. 2016;3(6):160136.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 19.

    Walker M, Mason G. A comparison of two types of running wheel in terms of mouse preference, health, and welfare. Physiology & Behavior. 2018;191:82–90.

    CAS 

    Google Scholar
     

  • 20.

    Sherwin C. Laboratory mice persist in gaining access to resources: a method of assessing the importance of environmental features. Applied Animal Behaviour Science. 1996;48(3-4):203–13.


    Google Scholar
     

  • 21.

    Tilly S-LC, Dallaire J, Mason GJ. Middle-aged mice with enrichment-resistant stereotypic behaviour show reduced motivation for enrichment. Animal Behaviour. 2010;80(3):363–73.


    Google Scholar
     

  • 22.

    Bailoo JD, Murphy E, Boada-Saña M, Varholick JA, Hintze S, Baussière C, et al. Effects of cage enrichment on behavior, welfare and outcome variability in female mice. Frontiers in Behavioral Neuroscience. 2018;12(232).

  • 23.

    Bechard A, Meagher R, Mason G. Environmental enrichment reduces the likelihood of alopecia in adult C57BL/6 J mice. Journal of the American Association for Laboratory Animal Science : JAALAS. 2011;50(2):171–4.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    Fureix C, Walker M, Harper L, Reynolds K, Saldivia-Woo A, Mason G. Stereotypic behaviour in standard non-enriched cages is an alternative to depression-like responses in C57BL/6 mice. Behavioural Brain Research. 2016;305:186–90.

    PubMed 

    Google Scholar
     

  • 25.

    Mason GJ, Latham N. Can’t stop, won’t stop: is stereotypy a reliable animal welfare indicator? Animal Welfare. 2004;13:S57–69.

    CAS 

    Google Scholar
     

  • 26.

    Würbel H, Chapman R, Rutland C. Effect of feed and environmental enrichment on development of stereotypic wire-gnawing in laboratory mice. Applied Animal Behaviour Science. 1998;60(1):69–81.


    Google Scholar
     

  • 27.

    Brydges NM, Leach M, Nicol K, Wright R, Bateson M. Environmental enrichment induces optimistic cognitive bias in rats. Animal Behaviour. 2011;81(1):169–75.


    Google Scholar
     

  • 28.

    Burman OH, Parker R, Paul ES, Mendl M. A spatial judgement task to determine background emotional state in laboratory rats. Rattus norvegicus. Animal Behaviour. 2008;76(3):801–9.


    Google Scholar
     

  • 29.

    Resasco A, MacLellan A, Ayala M, Kitchenham L, Edwards A, Lam S, et al. Cancer blues? A promising judgment bias task indicates pessimism in nude mice with tumors. Physiology & Behavior. 2021;113465.

  • 30.

    Richter SH, Schick A, Hoyer C, Lankisch K, Gass P, Vollmayr B. A glass full of optimism: enrichment effects on cognitive bias in a rat model of depression. Cognitive, Affective, & Behavioral Neuroscience. 2012;12(3):527–42.


    Google Scholar
     

  • 31.

    Van Gool W, Mirmiran M. Effects of aging and housing in an enriched environment on sleep-wake patterns in rats. Sleep. 1986;9(2):335–47.

    PubMed 

    Google Scholar
     

  • 32.

    Tagney J. Sleep patterns related to rearing rats in enriched and impoverished environments. Brain research. 1973;53(2):353–61.

    CAS 
    PubMed 

    Google Scholar
     

  • 33.

    Rockman GE, Glavin GB. Activity stress effects on voluntary ethanol consumption, mortality and ulcer development in rats. Pharmacology, biochemistry, and behavior. 1986;24(4):869–73.

    CAS 
    PubMed 

    Google Scholar
     

  • 34.

    Meijer MK, Spruijt BM, van Zutphen LF, Baumans V. Effect of restraint and injection methods on heart rate and body temperature in mice. Lab Anim. 2006;40(4):382–91.

    CAS 
    PubMed 

    Google Scholar
     

  • 35.

    European Parliament and the Council of the European Union. 2010. Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes. Official Journal of the European Union.


    Google Scholar
     

  • 36.

    Canadian Council on Animal Care. CCAC guidelines: Mice, (2019).

  • 37.

    Taylor K, Alvarez LR. An estimate of the number of animals used for scientific purposes worldwide in 2015. Alternatives to Laboratory Animals. 2019;47(5-6):196–213.

    PubMed 

    Google Scholar
     

  • 38.

    National Research Council. In: th, editor. Guide for the Care and Use of Laboratory Animals. The National Academies Collection: Reports funded by National Institutes of Health. Washington (DC) 2011.

  • 39.

    Ogden BE, Pang W, Agui T, Lee BH. Laboratory animal laws, regulations, guidelines and standards in China Mainland, Japan, and Korea. ILAR journal. 2017;57(3):301–11.


    Google Scholar
     

  • 40.

    Lahvis GP. Point of view: unbridle biomedical research from the laboratory cage. Elife. 2017;6:e27438.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 41.

    Mo C, Renoir T, Hannan AJ. What’s wrong with my mouse cage? Methodological considerations for modeling lifestyle factors and gene–environment interactions in mice. Journal of Neuroscience Methods. 2016;265:99–108.

    PubMed 

    Google Scholar
     

  • 42.

    Burrows L, E, J Hannan A. Towards environmental construct validity in animal models of CNS disorders: optimizing translation of preclinical studies. CNS & Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders). 2013;12(5):587–92.

    CAS 

    Google Scholar
     

  • 43.

    Sherwin C. The influences of standard laboratory cages on rodents and the validity of research data. Animal Welfare. 2004;13(1):9–15.


    Google Scholar
     

  • 44.

    Burrows EL, McOmish CE, Hannan AJ. Gene–environment interactions and construct validity in preclinical models of psychiatric disorders. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 2011;35(6):1376–82.

    PubMed 

    Google Scholar
     

  • 45.

    Lahvis GP. Rodent models of autism, epigenetics, and the inescapable problem of animal constraint. In: Gewirtz JC, Kim Y-K, editors. Animal Models of Behavior Genetics. New York, NY: Springer New York; 2016. p. 265–301.


    Google Scholar
     

  • 46.

    Cohen S, Murphy MLM, Prather AA. Ten surprising facts about stressful life events and disease risk. Annual Review of Psychology. 2019;70(1):577–97.

    PubMed 

    Google Scholar
     

  • 47.

    Zimmerman G, Shaltiel G, Barbash S, Cohen J, Gasho CJ, Shenhar-Tsarfaty S, et al. Post-traumatic anxiety associates with failure of the innate immune receptor TLR9 to evade the pro-inflammatory NFκB pathway. Translational. Psychiatry. 2012;2(2):e78.

    CAS 

    Google Scholar
     

  • 48.

    Rutters F, Pilz S, Koopman AD, Rauh SP, Te Velde SJ, Stehouwer CD, et al. The association between psychosocial stress and mortality is mediated by lifestyle and chronic diseases: the Hoorn Study. Soc Sci Med. 2014;118:166–72.

    PubMed 

    Google Scholar
     

  • 49.

    Segerstrom SC, Miller GE. Psychological stress and the human immune system: a meta-analytic study of 30 years of inquiry. Psychological bulletin. 2004;130(4):601.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 50.

    Cohen S, Janicki-Deverts D, Doyle WJ, Miller GE, Frank E, Rabin BS, et al. Chronic stress, glucocorticoid receptor resistance, inflammation, and disease risk. Proceedings of the National Academy of Sciences. 2012;109(16):5995–9.

    CAS 

    Google Scholar
     

  • 51.

    Geng C, Guo Y, Wang C, Liao D, Han W, Zhang J, et al. Systematic impacts of chronic unpredictable mild stress on metabolomics in rats. Scientific Reports. 2020;10(1):1–11.

    CAS 

    Google Scholar
     

  • 52.

    Razzoli M, Nyuyki‐Dufe K, Gurney A, Erickson C, McCallum J, Spielman N, et al. Social stress shortens lifespan in mice. Aging cell. 2018;17(4).

  • 53.

    National Research Council. Recognition and alleviation of distress in laboratory animals. Washington, DC: National Academies Press. 2008.

  • 54.

    Mason G, Walker M, Duggan G, Roulston N, Van Slack A. Negative affective states and their effects on morbidity, mortality and longevity; 2012.


    Google Scholar
     

  • 55.

    Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Systematic Reviews. 2015;4(1):1.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 56.

    Nakagawa S, Noble DW, Senior AM, Lagisz M. Meta-evaluation of meta-analysis: ten appraisal questions for biologists. BMC biology. 2017;15(1):1–14.


    Google Scholar
     

  • 57.

    Vesterinen H, Sena E, Egan K, Hirst T, Churolov L, Currie G, et al. Meta-analysis of data from animal studies: a practical guide. Journal of neuroscience methods. 2014;221:92–102.

    CAS 
    PubMed 

    Google Scholar
     

  • 58.

    Van Loo PL, de Groot AC, Van Zutphen BF, Baumans V. Do male mice prefer or avoid each other’s company? Influence of hierarchy, kinship, and familiarity. Journal of Applied Animal Welfare Science. 2001;4(2):91–103.


    Google Scholar
     

  • 59.

    Howerton CL, Garner JP, Mench JA. Effects of a running wheel-igloo enrichment on aggression, hierarchy linearity, and stereotypy in group-housed male CD-1 (ICR) mice. Applied Animal Behaviour Science. 2008;115(1):90–103.


    Google Scholar
     

  • 60.

    Walker MD, Mason G. Female C57BL/6 mice show consistent individual differences in spontaneous interaction with environmental enrichment that are predicted by neophobia. Behavioural Brain Research. 2011;224(1):207–12.

    PubMed 

    Google Scholar
     

  • 61.

    Will B, Pallaud B, Ungerer A, Ropartz P. Effects of rearing in different environments on subsequent environmental preference in rats. Developmental psychobiology. 1979;12(2):151–60.

    CAS 
    PubMed 

    Google Scholar
     

  • 62.

    Higgins J, Li T, Deeks JJ. Effect measures. In: Higgins J, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA editor. Cochrane Handbook for Systematic Reviews of Interventions version 62: Cochrane, 2021; 2021.

  • 63.

    Cohen J. Statistical power analysis for the behavioral sciences. New York: Academic press; 2013.

  • 64.

    Rohatgi A. WebPlotDigitizer. 4.4 ed. Pacifica, California, USA 2020.

  • 65.

    Guyot P, Ades A, Ouwens MJ, Welton NJ. Enhanced secondary analysis of survival data: reconstructing the data from published Kaplan-Meier survival curves. BMC medical research methodology. 2012;12(1):1–13.


    Google Scholar
     

  • 66.

    Hooijmans CR, Rovers MM, De Vries RB, Leenaars M, Ritskes-Hoitinga M, Langendam MW. SYRCLE’s risk of bias tool for animal studies. BMC Medical Research Methodology. 2014;14(1):1–9.


    Google Scholar
     

  • 67.

    Viechtbauer W. Conducting meta-analyses in R with the metafor package. Journal of Statistical Software. 2010;36(3):1–48.


    Google Scholar
     

  • 68.

    Rücker G, Cates CJ, Schwarzer G. Methods for including information from multi‐arm trials in pairwise meta‐analysis. Research Synthesis Methods. 2017;8(4):392–403.

    PubMed 

    Google Scholar
     

  • 69.

    Lajeunesse MJ. On the meta‐analysis of response ratios for studies with correlated and multi‐group designs. Ecology. 2011;92(11):2049–55.


    Google Scholar
     

  • 70.

    Song F, Parekh S, Hooper L, Loke YK, Ryder J, Sutton AJ, et al. Dissemination and publication of research findings: an updated review of related biases. Health Technol Assess. 2010;14(8):1–193.


    Google Scholar
     

  • 71.

    Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;1088-101.

  • 72.

    Sterne JA, Becker BJ, Egger M. The funnel plot. Publication bias in meta-analysis: Prevention, assessment and adjustments. 2005:75-98.

  • 73.

    Idris NRN. A comparison of methods to detect publication bias for meta-analysis of continuous data. Journal of Applied Sciences. 2012;12(13):1413–7.


    Google Scholar
     

  • 74.

    Hicks JA, Hatzidis A, Arruda NL, Gelineau RR, De Pina IM, Adams KW, et al. Voluntary wheel-running attenuates insulin and weight gain and affects anxiety-like behaviors in C57BL6/J mice exposed to a high-fat diet. Behav Brain Res. 2016;310:1–10.

    CAS 
    PubMed 

    Google Scholar
     

  • 75.

    Latham N, Mason G. From house mouse to mouse house: the behavioural biology of free-living Mus musculus and its implications in the laboratory. Applied Animal Behaviour Science. 2004;86(3):261–89.


    Google Scholar
     

  • 76.

    Liss C, Litwak K, Reinhardt V, Tilford D. Comfortable quarters for laboratory animals. Animal Welfare Institute. 2015.

  • 77.

    Wei Y, Yang CR, Wei YP, Ge ZJ, Zhao ZA, Zhang B, et al. Enriched environment-induced maternal weight loss reprograms metabolic gene expression in mouse offspring. The Journal of biological chemistry. 2015;290(8):4604–19.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 78.

    Martin B, Ji S, Maudsley S, Mattson MP. “Control” laboratory rodents are metabolically morbid: why it matters. Proc Natl Acad Sci U S A. 2010;107(14):6127–33.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 79.

    Gaskill BN, Gordon CJ, Pajor EA, Lucas JR, Davis JK, Garner JP. Heat or insulation: behavioral titration of mouse preference for warmth or access to a nest. PloS one. 2012;7(3):e32799.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 80.

    Gaskill BN, Gordon CJ, Pajor EA, Lucas JR, Davis JK, Garner JP. Impact of nesting material on mouse body temperature and physiology. Physiol Behav. 2013;110-111:87–95.

    CAS 
    PubMed 

    Google Scholar
     

  • 81.

    Gaskill BN, Pritchett-Corning KR, Gordon CJ, Pajor EA, Lucas JR, Davis JK, et al. Energy reallocation to breeding performance through improved nest building in laboratory mice. PLoS One. 2013;8(9):e74153.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 82.

    Hankenson FC, Marx JO, Gordon CJ, David JM. Effects of rodent thermoregulation on animal models in the research environment. Comp Med. 2018;68(6):425–38.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 83.

    Hylander BL, Repasky EA. Thermoneutrality, mice, and cancer: a heated opinion. Trends in cancer. 2016;2(4):166–75.

    PubMed 

    Google Scholar
     

  • 84.

    Nakagawa S, Poulin R, Mengersen K, Reinhold K, Engqvist L, Lagisz M, et al. Meta‐analysis of variation: ecological and evolutionary applications and beyond. Methods in Ecology and Evolution. 2015;6(2):143–52.


    Google Scholar
     

  • 85.

    Guyatt G, Oxman AD, Akl EA, Kunz R, Vist G, Brozek J, et al. GRADE guidelines: 1. Introduction-GRADE evidence profiles and summary of findings tables. Journal of clinical epidemiology. 2011;64(4):383–94.

    PubMed 

    Google Scholar
     

  • 86.

    Percie du Sert N, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M, et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLOS Biology. 2020;18(7):e3000410.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 87.

    Lazic SE, Clarke-Williams CJ, Munafò MR. What exactly is ‘N’ in cell culture and animal experiments? PLoS Biology. 2018;16(4):e2005282.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 88.

    Lazic SE. The problem of pseudoreplication in neuroscientific studies: is it affecting your analysis? BMC neuroscience. 2010;11(1):1-17.

  • 89.

    Festing MF, Altman DG. Guidelines for the design and statistical analysis of experiments using laboratory animals. Ilar j. 2002;43(4):244–58.

    CAS 
    PubMed 

    Google Scholar
     

  • 90.

    Festing MF. Experimental unit 2015 [[Accessed 04-10-2021]]. Available from: http://www.3rs-reduction.co.uk/html/3__the_experimental_unit.html.

  • 91.

    Li F, Liu K-F, Silva MD, Omae T, Sotak CH, Fenstermacher JD, et al. Transient and permanent resolution of ischemic lesions on diffusion-weighted imaging after brief periods of focal ischemia in rats: correlation with histopathology. Open Access Articles. 2001;1662.

  • 92.

    Nielsen NR, Kristensen TS, Schnohr P, Grønbæk M. Perceived stress and cause-specific mortality among men and women: results from a prospective cohort study. American journal of epidemiology. 2008;168(5):481–91.

    PubMed 

    Google Scholar
     

  • 93.

    Hamer M, Kivimaki M, Stamatakis E, Batty GD. Psychological distress and infectious disease mortality in the general population. Brain, behavior, and immunity. 2019;76:280–3.

    PubMed 

    Google Scholar
     

  • 94.

    Strong R, Miller RA, Astle CM, Baur JA, de Cabo R, Fernandez E, et al. Evaluation of resveratrol, green tea extract, curcumin, oxaloacetic acid, and medium-chain triglyceride oil on life span of genetically heterogeneous mice. The Journals of Gerontology: Series A. 2012;68(1):6–16.


    Google Scholar
     

  • 95.

    Martin-Montalvo A, Mercken EM, Mitchell SJ, Palacios HH, Mote PL, Scheibye-Knudsen M, et al. Metformin improves healthspan and lifespan in mice. Nature communications. 2013;4(1):1–9.


    Google Scholar
     

  • 96.

    Saltaji H, Armijo-Olivo S, Cummings GG, Amin M, Da Costa BR, Flores-Mir C. Influence of blinding on treatment effect size estimate in randomized controlled trials of oral health interventions. BMC medical research methodology. 2018;18(1):1–18.


    Google Scholar
     

  • 97.

    Reichlin TS, Vogt L, Würbel H. The researchers’ view of scientific rigor—survey on the conduct and reporting of in vivo research. PloS one. 2016;11(12):e0165999.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 98.

    Clough G. Environmental effects on animals used in biomedical research. Biological Reviews. 1982;57(3):487–523.

    CAS 
    PubMed 

    Google Scholar
     

  • 99.

    Johnston N, Nevalainen T, Hau J. Handbook of Laboratory Animal Science (Book 1); 2010.


    Google Scholar
     

  • 100.

    Kempermann G, Kuhn HG, Gage FH. More hippocampal neurons in adult mice living in an enriched environment. Nature. 1997;386(6624):493–5.

    CAS 
    PubMed 

    Google Scholar
     

  • 101.

    van Praag H, Kempermann G, Gage FH. Neural consequences of enviromental enrichment. Nature Reviews Neuroscience. 2000;1(3):191–8.

    PubMed 

    Google Scholar
     

  • 102.

    Canadian Council on Animal Care. CCAC policy statement on: categories of invasiveness in animal experiments, CCAC, Ottawa ON. 1991.

  • 103.

    Animal Welfare Act. USDA Policy #11: Painful and Distressful Procedures. USDA. Issue Date: 1343 March 25, 2011 References: AWA Section 2143, 9 CFR, Part 2, Sections 2.1344 31(d)(1)(i,ii,iv), 2.31(e)(4), 2.36(b)(5,6,7).

  • 104.

    Duncan I, Olsson I. Environmental enrichment: from flawed concept to pseudoscience; 2001.


    Google Scholar
     

  • 105.

    Barbee RW, Turner PV. Incorporating laboratory animal science into responsible biomedical research. ILAR journal. 2019;60(1):9–16.

    CAS 
    PubMed 

    Google Scholar
     

  • 106.

    Wolfer DP, Litvin O, Morf S, Nitsch RM, Lipp H-P, Würbel H. Cage enrichment and mouse behaviour. Nature. 2004;432(7019):821–2.

    CAS 
    PubMed 

    Google Scholar
     

  • 107.

    André V, Gau C, Scheideler A, Aguilar-Pimentel JA, Amarie OV, Becker L, et al. Laboratory mouse housing conditions can be improved using common environmental enrichment without compromising data. PLOS Biology. 2018;16(4):e2005019.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 108.

    Kola I, Landis J. Can the pharmaceutical industry reduce attrition rates? Nature reviews Drug discovery. 2004;3(8):711–6.

    CAS 
    PubMed 

    Google Scholar
     

  • 109.

    Paul SM, Mytelka DS, Dunwiddie CT, Persinger CC, Munos BH, Lindborg SR, et al. How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nature reviews Drug discovery. 2010;9(3):203–14.

    CAS 
    PubMed 

    Google Scholar
     

  • 110.

    Hay M, Thomas DW, Craighead JL, Economides C, Rosenthal J. Clinical development success rates for investigational drugs. Nature biotechnology. 2014;32(1):40–51.

    CAS 
    PubMed 

    Google Scholar
     

  • 111.

    DiMasi JA, Grabowski HG, Hansen RW. Innovation in the pharmaceutical industry: new estimates of R&D costs. Journal of Health Economics. 2016;47:20–33.

    PubMed 

    Google Scholar
     

  • 112.

    Wong CH, Siah KW, Lo AW. Estimation of clinical trial success rates and related parameters. Biostatistics. 2019;20(2):273–86.

    PubMed 

    Google Scholar
     

  • 113.

    David JM, Chatziioannou AF, Taschereau R, Wang H, Stout DB. The hidden cost of housing practices: using noninvasive imaging to quantify the metabolic demands of chronic cold stress of laboratory mice. Comparative Medicine. 2013;63(5):386–91.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 114.

    Voelkl B, Würbel H. A reaction norm perspective on reproducibility. Theory in Biosciences. 2021;140(2):169–76.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 115.

    Muhammad MS, Magaji RA, Mohammed A, Isa A-S, Magaji MG. Effect of resveratrol and environmental enrichment on biomarkers of oxidative stress in young healthy mice. Metabolic Brain Disease. 2017;32(1):163–70.

    CAS 
    PubMed 

    Google Scholar
     

  • 116.

    David A, Costa JR, Cracchiolo AD, Bachstetter TF, Hughes KR, Bales SM, Paul RF, Mervis Gary W, Arendash HP . Enrichment improves cognition in AD mice by amyloid-related and unrelated mechanisms. Neurobiology of Aging. 2007;28(6):831-44. https://doi.org/10.1016/j.neurobiolaging.2006.04.009.

  • 117.

    Scafidi J, Ritter J, Talbot BM, Edwards J, Chew L-J, Gallo V. Age-dependent cellular and behavioral deficits induced by molecularly targeted drugs are reversible. Cancer research. 2018;78(8):2081–95.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 118.

    Jeffers MS, Hoyles A, Morshead C, Corbett D. Epidermal growth factor and erythropoietin infusion accelerate functional recovery in combination with rehabilitation. Stroke. 2014;45(6):1856–8.

    CAS 
    PubMed 

    Google Scholar
     

  • 119.

    Gurfein BT, Davidenko O, Premenko-Lanier M, Milush JM, Acree M, Dallman MF, et al. Environmental enrichment alters splenic immune cell composition and enhances secondary influenza vaccine responses in mice. Molecular Medicine. 2014;20(1):179–90.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 120.

    Swaisgood R, Sheperdson D. Environmental enrichment as a strategy for mitigating stereotypies in zoo animals: a literature review and meta-analysis. In: Mason G, Rushen J, editors. Stereotypic Animal Behaviour: Fundamentals and Applications to Welfare. 2nd ed. Wallingford: CABI; 2006.

  • 121.

    Van Loo PL, Blom HJ, Meijer MK, Baumans V. Assessment of the use of two commercially available environmental enrichments by laboratory mice by preference testing. Laboratory animals. 2005;39(1):58–67.

    PubMed 

    Google Scholar
     

  • 122.

    Garner JP, Mason GJ. Evidence for a relationship between cage stereotypies and behavioural disinhibition in laboratory rodents. Behavioural Brain Research. 2002;136(1):83–92.

    PubMed 

    Google Scholar
     

  • 123.

    Richter SH, Garner JP, Auer C, Kunert J, Würbel H. Systematic variation improves reproducibility of animal experiments. Nature Methods. 2010;7(3):167–8.

    CAS 
    PubMed 

    Google Scholar
     

  • 124.

    Voelkl B, Altman NS, Forsman A, Forstmeier W, Gurevitch J, Jaric I, et al. Reproducibility of animal research in light of biological variation. Nature Reviews Neuroscience. 2020;21(7):384–93.

    CAS 
    PubMed 

    Google Scholar
     

  • 125.

    Diniz DG, Foro CAR, Sosthenes MCK, Demachki S, Gomes GF, Malerba GA, et al. Aging and environmental enrichment exacerbate inflammatory response on antibody-enhanced Dengue disease in immunocompetent murine model. European Journal of Inflammation. 2013;11(3):719–31.

    CAS 

    Google Scholar
     

  • 126.

    Gomes GF, Peixoto R, Maciel BG, Santos KFD, Bayma LR, Feitoza Neto PA, et al. Differential microglial morphological response, TNFα, and viral load in sedentary-like and active murine models after systemic non-neurotropic Dengue virus infection. The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society. 2019;67(6):419–39.

    CAS 

    Google Scholar
     

  • 127.

    Brod S, Gobbetti T, Gittens B, Ono M, Perretti M. D’Acquisto F. The impact of environmental enrichment on the murine inflammatory immune response. JCI insight. 2017;2(7).

  • 128.

    Singhal G, Morgan J, Corrigan F, Toben C, Jawahar MC, Jaehne EJ, et al. Short-term environmental enrichment is a stronger modulator of brain glial cells and cervical lymph node t cell subtypes than exercise or combined exercise and enrichment. Cellular and Molecular Neurobiology. 2021;41:469–86.

    CAS 
    PubMed 

    Google Scholar
     

  • 129.

    Pence BD, Ryerson MR, Bravo Cruz AG, Woods JA, Shisler JL. Voluntary wheel running does not alter mortality to or immunogenicity of vaccinia virus in mice: a pilot study. Frontiers in Physiology. 2018;8(1123).

  • 130.

    Soldin OP, Mattison DR. Sex differences in pharmacokinetics and pharmacodynamics. Clinical pharmacokinetics. 2009;48(3):143–57.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 131.

    Zopf Y, Rabe C, Neubert A, Gaßmann KG, Rascher W, Hahn EG, et al. Women encounter ADRs more often than do men. European Journal of Clinical Pharmacology. 2008;64(10):999.

    CAS 
    PubMed 

    Google Scholar
     

  • 132.

    Karp NA, Reavey N. Sex bias in preclinical research and an exploration of how to change the status quo. British journal of pharmacology. 2019;176(21):4107–18.

    CAS 
    PubMed 

    Google Scholar
     

  • 133.

    Krohn T, Sørensen D, Ottesen J, Hansen A. The effects of individual housing on mice and rats: a review. Animal Welfare. 2006;15(4):343–52.

    CAS 

    Google Scholar
     

  • 134.

    Begni V, Sanson A, Pfeiffer N, Brandwein C, Inta D, Talbot SR, et al. Social isolation in rats: Effects on animal welfare and molecular markers for neuroplasticity. PloS one. 2020;15(10):e0240439.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 135.

    Arakawa H. Ethological approach to social isolation effects in behavioral studies of laboratory rodents. Behavioural brain research. 2018;341:98–108.

    PubMed 

    Google Scholar
     

  • 136.

    Henrich J, Heine SJ, Norenzayan A. The weirdest people in the world? Behavioral and brain sciences. 2010;33(2-3):61–83.


    Google Scholar
     

  • 137.

    Webster MM, Rutz C. How STRANGE are your study animals? Nature comment. 2020;337-340.

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)