• 1.

    Hanin M, Ebel C, Ngom M, Laplaze L, Masmoudi K. New Insights on Plant Salt Tolerance Mechanisms and Their Potential Use for Breeding. Front Plant Sci. 2016;7:1787. https://doi.org/10.3389/fpls.2016.01787.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 2.

    Munns R, Tester M. Mechanisms of Salinity Tolerance. Annu Rev Plant Biol. 2008;59:651–81.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 3.

    Ahanger MA, Tomar NS, Tittal M, Argal S, Agarwal RM. Plant growth under water/salt stress: ROS production; antioxidants and significance of added potassium under such conditions. Physiol Mol Biol Plants. 2017;23:731–44.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 4.

    Pang C-H, Wang B-S. Oxidative Stress and Salt Tolerance in Plants. In: Lüttge U, Beyschlag W, Murata J, editors. Progress in Botany. Berlin, Heidelberg: Springer; 2008. p. 231–45. https://doi.org/10.1007/978-3-540-72954-9_9.

    Chapter 

    Google Scholar
     

  • 5.

    Farooq M, Hussain M, Wakeel A, Siddique KHM. Salt stress in maize: effects, resistance mechanisms, and management. A review Agron Sustain Dev. 2015;35:461–81.

    CAS 

    Google Scholar
     

  • 6.

    Huang Y, Zhang X, Li Y, Ding J, Du H, Zhao Z, et al. Overexpression of the Suaeda salsa SsNHX1 gene confers enhanced salt and drought tolerance to transgenic Zea mays. J Integr Agric. 2018;17:2612–23.

    CAS 

    Google Scholar
     

  • 7.

    Zhang F, Chen X, Wang J, Zheng J. Overexpression of a maize SNF-related protein kinase gene, ZmSnRK2.11 reduces salt and drought tolerance in Arabidopsis. J Integr Agric. 2015;14:1229–41.

    CAS 

    Google Scholar
     

  • 8.

    Zhang M, Cao Y, Wang Z, Wang Z, Shi J, Liang X, et al. A retrotransposon in an HKT1 family sodium transporter causes variation of leaf Na+ exclusion and salt tolerance in maize. New Phytol. 2018;217:1161–76.

    CAS 
    PubMed 

    Google Scholar
     

  • 9.

    Zhang M, Liang X, Wang L, Cao Y, Song W, Shi J, et al. A HAK family Na + transporter confers natural variation of salt tolerance in maize. Nat Plants. 2019;5:1297–308.

    CAS 
    PubMed 

    Google Scholar
     

  • 10.

    Wu J, Jiang Y, Liang Y, Chen L, Chen W, Cheng B. Expression of the maize MYB transcription factor ZmMYB3R enhances drought and salt stress tolerance in transgenic plants. Plant Physiol Biochem. 2019;137:179–88.

    CAS 
    PubMed 

    Google Scholar
     

  • 11.

    Cao H, Wang L, Nawaz MA, Niu M, Sun J, Xie J, et al. Ectopic Expression of Pumpkin NAC Transcription Factor CmNAC1 Improves Multiple Abiotic Stress Tolerance in Arabidopsis. Front Plant Sci. 2017;8:2052. https://doi.org/10.3389/fpls.2017.02052.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 12.

    Li H, Gao Y, Xu H, Dai Y, Deng D, Chen J. ZmWRKY33, a WRKY maize transcription factor conferring enhanced salt stress tolerances in Arabidopsis. Plant Growth Regul. 2013;70:207–16.

    CAS 

    Google Scholar
     

  • 13.

    Li M, Chen R, Jiang Q, Sun X, Zhang H, Hu Z. GmNAC06, a NAC domain transcription factor enhances salt stress tolerance in soybean. Plant Mol Biol. 2021;105:333–45.

    CAS 
    PubMed 

    Google Scholar
     

  • 14.

    Shen Z, Ding M, Sun J, Deng S, Zhao R, Wang M, et al. Overexpression of PeHSF mediates leaf ROS homeostasis in transgenic tobacco lines grown under salt stress conditions. Plant Cell Tissue Organ Cult PCTOC. 2013;115:299–308.

    CAS 

    Google Scholar
     

  • 15.

    Ying S, Zhang D-F, Fu J, Shi Y-S, Song Y-C, Wang T-Y, et al. Cloning and characterization of a maize bZIP transcription factor, ZmbZIP72, confers drought and salt tolerance in transgenic Arabidopsis. Planta. 2012;235:253–66.

    CAS 
    PubMed 

    Google Scholar
     

  • 16.

    Mahajan S, Pandey GK, Tuteja N. Calcium- and salt-stress signaling in plants: Shedding light on SOS pathway. Arch Biochem Biophys. 2008;471:146–58.

    CAS 
    PubMed 

    Google Scholar
     

  • 17.

    Yang Y, Guo Y. Unraveling salt stress signaling in plants. J Integr Plant Biol. 2018;60:796–804.

    CAS 
    PubMed 

    Google Scholar
     

  • 18.

    You J, Chan Z. ROS Regulation During Abiotic Stress Responses in Crop Plants. Front Plant Sci. 2015;6:1092. https://doi.org/10.3389/fpls.2015.01092.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 19.

    Zhao X, Bai X, Jiang C, Li Z. Phosphoproteomic Analysis of Two Contrasting Maize Inbred Lines Provides Insights into the Mechanism of Salt-Stress Tolerance. Int J Mol Sci. 2019;20:1886.

    CAS 
    PubMed Central 

    Google Scholar
     

  • 20.

    Statello L, Guo C-J, Chen L-L, Huarte M. Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol. 2021;22:96–118.

    CAS 
    PubMed 

    Google Scholar
     

  • 21.

    Bazin J, Baerenfaller K, Gosai SJ, Gregory BD, Crespi M, Bailey-Serres J. Global analysis of ribosome-associated noncoding RNAs unveils new modes of translational regulation. Proc Natl Acad Sci. 2017;114:E10018–27.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 22.

    Mao Y, Xu J, Wang Q, Li G, Tang X, Liu T, et al. A natural antisense transcript acts as a negative regulator for the maize drought stress response gene ZmNAC48. J Exp Bot. 2021. https://doi.org/10.1093/jxb/erab023.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 23.

    Ponting CP, Oliver PL, Reik W. Evolution and Functions of Long Noncoding RNAs. Cell. 2009;136:629–41.

    CAS 
    PubMed 

    Google Scholar
     

  • 24.

    Li L, Eichten SR, Shimizu R, Petsch K, Yeh C-T, Wu W, et al. Genome-wide discovery and characterization of maize long non-coding RNAs. Genome Biol. 2014;15:R40.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 25.

    Huanca-Mamani W, Arias-Carrasco R, Cárdenas-Ninasivincha S, Rojas-Herrera M, Sepúlveda-Hermosilla G, Caris-Maldonado JC, et al. Long Non-Coding RNAs Responsive to Salt and Boron Stress in the Hyper-Arid Lluteño Maize from Atacama Desert. Genes. 2018;9:170.

    PubMed Central 

    Google Scholar
     

  • 26.

    Lv Y, Hu F, Zhou Y, Wu F, Gaut BS. Maize transposable elements contribute to long non-coding RNAs that are regulatory hubs for abiotic stress response. BMC Genomics. 2019;20:864.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 27.

    Köster J, Rahmann S. Snakemake—a scalable bioinformatics workflow engine. Bioinformatics. 2012;28:2520–2.

    PubMed 

    Google Scholar
     

  • 28.

    Zhang X, Liu P, Qing C, Yang C, Shen Y, Ma L. Comparative transcriptome analyses of maize seedling root responses to salt stress. PeerJ. 2021;9:e10765.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 29.

    Jiao Y, Peluso P, Shi J, Liang T, Stitzer MC, Wang B, et al. Improved maize reference genome with single-molecule technologies. Nature. 2017;546:524–7.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 30.

    Yan Q, Wu F, Yan Z, Li J, Ma T, Zhang Y, et al. Differential co-expression networks of long non-coding RNAs and mRNAs in Cleistogenes songorica under water stress and during recovery. BMC Plant Biol. 2019;19:23.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 31.

    Fan T, Zhang Q, Hu Y, Wang Z, Huang Y. Genome-wide identification of lncRNAs during hickory (Carya cathayensis) flowering. Funct Integr Genomics. 2020;20:591–607.

    PubMed 

    Google Scholar
     

  • 32.

    Fu L, Ding Z, Tan D, Han B, Sun X, Zhang J. Genome-wide discovery and functional prediction of salt-responsive lncRNAs in duckweed. BMC Genomics. 2020;21:212.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Bai J, Sun F, Wang M, Su L, Li R, Caetano-Anollés G. Genome-wide analysis of the MYB-CC gene family of maize. Genetica. 2019;147:1–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 34.

    Cai R, Dai W, Zhang C, Wang Y, Wu M, Zhao Y, et al. The maize WRKY transcription factor ZmWRKY17 negatively regulates salt stress tolerance in transgenic Arabidopsis plants. Planta. 2017;246:1215–31.

    CAS 
    PubMed 

    Google Scholar
     

  • 35.

    Han G, Lu C, Guo J, Qiao Z, Sui N, Qiu N, et al. C2H2 Zinc Finger Proteins Master Regulators of Abiotic Stress Responses in Plants. Front Plant Sci. 2020;11:115. https://doi.org/10.3389/fpls.2020.00115.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 36.

    Lee S, Lee J, Paek K-H, Kwon S-Y, Cho HS, Kim SJ, et al. A novel WD40 protein, BnSWD1, is involved in salt stress in Brassica napus. Plant Biotechnol Rep. 2010;4:165–72.


    Google Scholar
     

  • 37.

    Li Z, Liu C, Zhang Y, Wang B, Ran Q, Zhang J. The bHLH family member ZmPTF1 regulates drought tolerance in maize by promoting root development and abscisic acid synthesis. J Exp Bot. 2019;70:5471–86.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 38.

    Han F, Li J, Zhao R, Liu L, Li L, Li Q, et al. Identification and co-expression analysis of long noncoding RNAs and mRNAs involved in the deposition of intramuscular fat in Aohan fine-wool sheep. BMC Genomics. 2021;22:98.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 39.

    Ma L, Zhang M, Chen J, Qing C, He S, Zou C, et al. GWAS and WGCNA uncover hub genes controlling salt tolerance in maize (Zea mays L seedlings. Theor Appl Genet. 2021. https://doi.org/10.1007/s00122-021-03897-w.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 40.

    Wang P, Dai L, Ai J, Wang Y, Ren F. Identification and functional prediction of cold-related long non-coding RNA (lncRNA) in grapevine. Sci Rep. 2019;9:6638.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 41.

    Hu S, Zhang M, Yang Y, Xuan W, Zou Z, Arkorful E, et al. A novel insight into nitrogen and auxin signaling in lateral root formation in tea plant [Camellia sinensis L. O. Kuntze]. BMC Plant Biol. 2020;20:232.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 42.

    Liu L, Wu X, Sun W, Yu X, Demura T, Li D, et al. Galactinol synthase confers salt-stress tolerance by regulating the synthesis of galactinol and raffinose family oligosaccharides in poplar. Ind Crops Prod. 2021;165:113432.

    CAS 

    Google Scholar
     

  • 43.

    Xing B, Gu C, Zhang T, Zhang Q, Yu Q, Jiang J, et al. Functional Study of BpPP2C1 Revealed Its Role in Salt Stress in Betula platyphylla. Front Plant Sci. 2021;11:617635.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 44.

    Zagorchev L, Kamenova P, Odjakova M. The Role of Plant Cell Wall Proteins in Response to Salt Stress. Sci World J. 2014;2014:e764089.


    Google Scholar
     

  • 45.

    Gao Y, Lu Y, Wu M, Liang E, Li Y, Zhang D, et al. Ability to Remove Na+ and Retain K+ Correlates with Salt Tolerance in Two Maize Inbred Lines Seedlings. Front Plant Sci. 2016;7:1716. https://doi.org/10.3389/fpls.2016.01716.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 46.

    Sun X, Zheng H, Li J, Liu L, Zhang X, Sui N. Comparative Transcriptome Analysis Reveals New lncRNAs Responding to Salt Stress in Sweet Sorghum. Front Bioeng Biotechnol. 2020;8:331. https://doi.org/10.3389/fbioe.2020.00331.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 47.

    Wen X, Ding Y, Tan Z, Wang J, Zhang D, Wang Y. Identification and characterization of cadmium stress-related LncRNAs from Betula platyphylla. Plant Sci. 2020;299:110601.

    CAS 
    PubMed 

    Google Scholar
     

  • 48.

    Zhang X, Dong J, Deng F, Wang W, Cheng Y, Song L, et al. The long non-coding RNA lncRNA973 is involved in cotton response to salt stress. BMC Plant Biol. 2019;19:459.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 49.

    Zhu C, Schraut D, Hartung W, Schäffner AR. Differential responses of maize MIP genes to salt stress and ABA. J Exp Bot. 2005;56:2971–81.

    CAS 
    PubMed 

    Google Scholar
     

  • 50.

    Zörb C, Noll A, Karl S, Leib K, Yan F, Schubert S. Molecular characterization of Na+/H+ antiporters (ZmNHX) of maize (Zea mays L.) and their expression under salt stress. J Plant Physiol. 2005;162:55–66.

    PubMed 

    Google Scholar
     

  • 51.

    Pang J, Zhang X, Ma X, Zhao J. Spatio-Temporal Transcriptional Dynamics of Maize Long Non-Coding RNAs Responsive to Drought Stress. Genes. 2019;10:138.

    CAS 
    PubMed Central 

    Google Scholar
     

  • 52.

    Wang H, Niu Q-W, Wu H-W, Liu J, Ye J, Yu N, et al. Analysis of non-coding transcriptome in rice and maize uncovers roles of conserved lncRNAs associated with agriculture traits. Plant J. 2015;84:404–16.

    CAS 
    PubMed 

    Google Scholar
     

  • 53.

    Augustino SMA, Xu Q, Liu X, Mi S, Shi L, Liu Y, et al. Integrated analysis of lncRNAs and mRNAs reveals key trans-target genes associated with ETEC-F4ac adhesion phenotype in porcine small intestine epithelial cells. BMC Genomics. 2020;21:780.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 54.

    Ding D, Zhang L, Wang H, Liu Z, Zhang Z, Zheng Y. Differential expression of miRNAs in response to salt stress in maize roots. Ann Bot. 2009;103:29–38.

    CAS 
    PubMed 

    Google Scholar
     

  • 55.

    Zhang Y, Ge F, Hou F, Sun W, Zheng Q, Zhang X, et al. Transcription Factors Responding to Pb Stress in Maize. Genes. 2017;8:231.

    PubMed Central 

    Google Scholar
     

  • 56.

    Long Y, Wang X, Youmans DT, Cech TR. How do lncRNAs regulate transcription? Sci Adv. 2017;3:eaao2110.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 57.

    Braun H-P. The Oxidative Phosphorylation system of the mitochondria in plants. Mitochondrion. 2020;53:66–75.

    CAS 
    PubMed 

    Google Scholar
     

  • 58.

    AK Srivastava AN Rai VY Patade P Suprasanna Calcium Signaling and Its Significance in Alleviating Salt Stress in Plants P Ahmad MM Azooz MNV Prasad Salt Stress in Plants Signalling Omics and Adaptations Springer New York 2013 197 218 https://doi.org/10.1007/978-1-4614-6108-1_9

  • 59.

    Wang B, Tang D, Zhang Z, Wang Z. Identification of aberrantly expressed lncRNA and the associated TF-mRNA network in hepatocellular carcinoma. J Cell Biochem. 2020;121:1491–503.

    CAS 
    PubMed 

    Google Scholar
     

  • 60.

    Pireyre M, Burow M. Regulation of MYB and bHLH Transcription Factors: A Glance at the Protein Level. Mol Plant. 2015;8:378–88.

    CAS 
    PubMed 

    Google Scholar
     

  • 61.

    Dong Y, Wang C, Han X, Tang S, Liu S, Xia X, et al. A novel bHLH transcription factor PebHLH35 from Populus euphratica confers drought tolerance through regulating stomatal development, photosynthesis and growth in Arabidopsis. Biochem Biophys Res Commun. 2014;450:453–8.

    CAS 
    PubMed 

    Google Scholar
     

  • 62.

    Jiang Y, Yang B, Deyholos MK. Functional characterization of the Arabidopsis bHLH92 transcription factor in abiotic stress. Mol Genet Genomics. 2009;282:503–16.

    CAS 
    PubMed 

    Google Scholar
     

  • 63.

    Yadav BS, Mani A. Analysis of bHLH coding genes of Cicer arietinum during heavy metal stress using biological network. Physiol Mol Biol Plants. 2019;25:113–21.

    CAS 
    PubMed 

    Google Scholar
     

  • 64.

    Nishizawa A, Yabuta Y, Shigeoka S. Galactinol and Raffinose Constitute a Novel Function to Protect Plants from Oxidative Damage. Plant Physiol. 2008;147:1251–63.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 65.

    Lv Y, Liang Z, Ge M, Qi W, Zhang T, Lin F, et al. Genome-wide identification and functional prediction of nitrogen-responsive intergenic and intronic long non-coding RNAs in maize (Zea mays L.). BMC Genomics. 2016;17:350.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 66.

    Wu H-J, Wang Z-M, Wang M, Wang X-J. Widespread Long Noncoding RNAs as Endogenous Target Mimics for MicroRNAs in Plants. Plant Physiol. 2013;161:1875–84.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 67.

    Kozomara A, Birgaoanu M, Griffiths-Jones S. miRBase: from microRNA sequences to function. Nucleic Acids Res. 2019;47:D155–62.

    CAS 
    PubMed 

    Google Scholar
     

  • 68.

    Dai X, Zhuang Z, Zhao PX. psRNATarget: a plant small RNA target analysis server (2017 release). Nucleic Acids Res. 2018;46:W49-54.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 69.

    Prasad Shaw B. Salt stress tolerance in plants: the role of miRNAs. Adv Plants Agric Res. 2018;8(6):411–5. https://doi.org/10.15406/apar.2018.08.00360.

    Article 

    Google Scholar
     

  • 70.

    Lee WS, Gudimella R, Wong GR, Tammi MT, Khalid N, Harikrishna JA. Transcripts and MicroRNAs Responding to Salt Stress in Musa acuminata Colla (AAA Group) cv. Berangan Roots. PLOS ONE. 2015;10:e0127526.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 71.

    Shukla PS, Borza T, Critchley AT, Hiltz D, Norrie J, Prithiviraj B. Ascophyllum nodosum extract mitigates salinity stress in Arabidopsis thaliana by modulating the expression of miRNA involved in stress tolerance and nutrient acquisition. PLoS ONE. 2018;13:e0206221.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 72.

    Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34:i884–90.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 73.

    Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 74.

    RNAcentral Consortium T, Sweeney BA, Petrov AI, Burkov B, FinnBateman RDA, et al. RNAcentral: a hub of information for non-coding RNA sequences. Nucleic Acids Res. 2019;47:D221-9.


    Google Scholar
     

  • 75.

    Kim D, Langmead B, Salzberg SL. hisAt: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12:357.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 76.

    Pertea M, Pertea GM, Antonescu CM, Chang T-C, Mendell JT, Salzberg SL. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol. 2015;33:290–5.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 77.

    Wucher V, Legeai F, Hédan B, Rizk G, Lagoutte L, Leeb T, et al. FEELnc: a tool for long non-coding RNA annotation and its application to the dog transcriptome. Nucleic Acids Res. 2017;45:e57–e57.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 78.

    Pertea G, Pertea M, GFF Utilities. GffRead and GffCompare. F1000Research. 2020;9:304.


    Google Scholar
     

  • 79.

    Kang Y-J, Yang D-C, Kong L, Hou M, Meng Y-Q, Wei L, et al. CPC2: a fast and accurate coding potential calculator based on sequence intrinsic features. Nucleic Acids Res. 2017;45:W12–6.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 80.

    Sun L, Luo H, Bu D, Zhao G, Yu K, Zhang C, et al. Utilizing sequence intrinsic composition to classify protein-coding and long non-coding transcripts. Nucleic Acids Res. 2013;41:e166–e166.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 81.

    Madeira F, Park Y mi, Lee J, Buso N, Gur T, Madhusoodanan N, et al. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res. 2019;47:W636-41.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 82.

    Wang L, Park HJ, Dasari S, Wang S, Kocher J-P, Li W. CPAT: Coding-Potential Assessment Tool using an alignment-free logistic regression model. Nucleic Acids Res. 2013;41:e74.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 83.

    Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-PlazaForslund ASK, Cook H, et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 2019;47:D309-14.

    CAS 
    PubMed 

    Google Scholar
     

  • 84.

    Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 85.

    Li J, Ma W, Zeng P, Wang J, Geng B, Yang J, et al. LncTar: a tool for predicting the RNA targets of long noncoding RNAs. Brief Bioinform. 2015;16:806–12.

    CAS 
    PubMed 

    Google Scholar
     

  • 86.

    Shao J, Zhang Y, Fan G, Xin Y, Yao Y. Transcriptome analysis identified a novel 3-LncRNA regulatory network of transthyretin attenuating glucose induced hRECs dysfunction in diabetic retinopathy. BMC Med Genomics. 2019;12:134.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 87.

    Yoon Y, Seo DH, Shin H, Kim HJ, Kim CM, Jang G. The Role of Stress-Responsive Transcription Factors in Modulating Abiotic Stress Tolerance in Plants. Agronomy. 2020;10:788.

    CAS 

    Google Scholar
     

  • 88.

    Jin J, Tian F, Yang D-C, Meng Y-Q, Kong L, Luo J, et al. PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Res. 2017;45:D1040-5.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 89.

    Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9:559.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 90.

    Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res. 2003;13:2498–504.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)