• 1.

    Rosselló-Mora R, Amann R. The species concept for prokaryotes. FEMS Microbiol Rev. 2001;25:39–67.

    PubMed 

    Google Scholar
     

  • 2.

    Fraser C, Alm EJ, Polz MF, Spratt BG, Hanage WP. The bacterial species challenge: making sense of genetic and ecological diversity. Science. 2009;323:741–6.

    CAS 
    PubMed 

    Google Scholar
     

  • 3.

    Bobay L-M, Ochman H. Biological species are universal across life’s domains. Genome Biol Evol. 2017;9:491–501.

    PubMed Central 

    Google Scholar
     

  • 4.

    Konstantinidis K, Ramette A, Tiedje JM. The bacterial species definition in the genomic era. Philos Trans R Soc B Biol Sci. 2006;361:1929–40.


    Google Scholar
     

  • 5.

    Popoff MY, Kersters K, Kiredjian M, Miras I, Coynault C. Position taxonomique de souches de Agrobacterium d’origine hospitalière. Ann Inst Pasteur Microbiol. 1984;135:427–42.


    Google Scholar
     

  • 6.

    Costechareyre D, Bertolla F, Nesme X. Homologous recombination in Agrobacterium: potential implications for the genomic species concept in bacteria. Mol Biol Evol. 2009;26:167–76.

    CAS 
    PubMed 

    Google Scholar
     

  • 7.

    Wu C-F, Santos MNM, Cho S-T, Chang H-H, Tsai Y-M, Smith DA, et al. Plant-pathogenic Agrobacterium tumefaciens strains have diverse type VI effector-immunity pairs and vary in in-planta competitiveness. Mol Plant Microbe Interact. 2019;32:961–71.

    CAS 
    PubMed 

    Google Scholar
     

  • 8.

    Lassalle F, Planel R, Penel S, Chapulliot D, Barbe V, Dubost A, et al. Ancestral genome estimation reveals the history of ecological diversification in Agrobacterium. Genome Biol Evol. 2017;9:3413–31.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 9.

    Weisberg AJ, Davis EW, Tabima J, Belcher MS, Miller M, Kuo C-H, et al. Unexpected conservation and global transmission of agrobacterial virulence plasmids. Science. 2020;368:eaba5256.

    CAS 
    PubMed 

    Google Scholar
     

  • 10.

    Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90 K prokaryotic genomes reveals clear species boundaries. Nat Commun. 2018;9:5114.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 11.

    Murray CS, Gao Y, Wu M. Re-evaluating the evidence for a universal genetic boundary among microbial species. Nat Commun. 2021;12:4059.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 12.

    Young JM. Agrobacterium—taxonomy of plant-pathogenic Rhizobium species. In: Tzfira T, Citovsky V, editors. Agrobacterium Biol Biotechnol. New York: Springer; 2008. p. 183–220. Available from: http://link.springer.com/chapter/10.1007/978-0-387-72290-0_5.


    Google Scholar
     

  • 13.

    Kado CI. Historical account on gaining insights on the mechanism of crown gall tumorigenesis induced by Agrobacterium tumefaciens. Front Microbiol. 2014;5:340.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 14.

    Nester EW. Agrobacterium: nature’s genetic engineer. Front Plant Sci. 2015;5:730.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    Hwang H-H, Yu M, Lai E-M. Agrobacterium-mediated plant transformation: biology and applications. Arab Book. 2017;15:e0186.


    Google Scholar
     

  • 16.

    Mougel C, Thioulouse J, Perrière G, Nesme X. A mathematical method for determining genome divergence and species delineation using AFLP. Int J Syst Evol Microbiol. 2002;52:573–86.

    CAS 
    PubMed 

    Google Scholar
     

  • 17.

    Portier P, Saux MF-L, Mougel C, Lerondelle C, Chapulliot D, Thioulouse J, et al. Identification of genomic species in Agrobacterium biovar 1 by AFLP genomic markers. Appl Environ Microbiol. 2006;72:7123–31.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 18.

    Costechareyre D, Rhouma A, Lavire C, Portier P, Chapulliot D, Bertolla F, et al. Rapid and efficient identification of Agrobacterium species by recA allele analysis: Agrobacterium recA diversity. Microb Ecol. 2010;60:862–72.

    CAS 
    PubMed 

    Google Scholar
     

  • 19.

    Hellens R, Mullineaux P, Klee H. A guide to Agrobacterium binary Ti vectors. Trends Plant Sci. 2000;5:446–51.

    CAS 
    PubMed 

    Google Scholar
     

  • 20.

    Lee L-Y, Gelvin SB. T-DNA binary vectors and systems. Plant Physiol. 2008;146:325–32.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 21.

    Lassalle F, Campillo T, Vial L, Baude J, Costechareyre D, Chapulliot D, et al. Genomic species are ecological species as revealed by comparative genomics in Agrobacterium tumefaciens. Genome Biol Evol. 2011;3:762–81.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 22.

    Young JM, Pennycook SR, Watson DRW. Proposal that Agrobacterium radiobacter has priority over Agrobacterium tumefaciens. Request for an Opinion. Int J Syst Evol Microbiol. 2006;56:491–3.

    CAS 
    PubMed 

    Google Scholar
     

  • 23.

    Slater SC, Goldman BS, Goodner B, Setubal JC, Farrand SK, Nester EW, et al. Genome sequences of three Agrobacterium biovars help elucidate the evolution of multichromosome genomes in bacteria. J Bacteriol. 2009;191:2501–11.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    Goodner B, Hinkle G, Gattung S, Miller N, Blanchard M, Qurollo B, et al. Genome sequence of the plant pathogen and biotechnology agent Agrobacterium tumefaciens C58. Science. 2001;294:2323–8.

    CAS 
    PubMed 

    Google Scholar
     

  • 25.

    Wood DW, Setubal JC, Kaul R, Monks DE, Kitajima JP, Okura VK, et al. The genome of the natural genetic engineer Agrobacterium tumefaciens C58. Science. 2001;294:2317–23.

    CAS 
    PubMed 

    Google Scholar
     

  • 26.

    Haryono M, Cho S-T, Fang M-J, Chen A-P, Chou S-J, Lai E-M, et al. Differentiations in gene content and expression response to virulence induction between two Agrobacterium strains. Front Microbiol. 2019;10:1554.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 27.

    Ma L-S, Hachani A, Lin J-S, Filloux A, Lai E-M. Agrobacterium tumefaciens deploys a superfamily of type VI secretion DNase effectors as weapons for interbacterial competition in planta. Cell Host Microbe. 2014;16:94–104.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Ostell J, Pruitt KD, et al. GenBank. Nucleic Acids Res. 2018;46:D41–7.

    CAS 
    PubMed 

    Google Scholar
     

  • 29.

    Ormeño-Orrillo E, Servín-Garcidueñas LE, Rogel MA, González V, Peralta H, Mora J, et al. Taxonomy of rhizobia and agrobacteria from the Rhizobiaceae family in light of genomics. Syst Appl Microbiol. 2015;38:287–91.

    PubMed 

    Google Scholar
     

  • 30.

    Hernandez RE, Gallegos-Monterrosa R, Coulthurst SJ. Type VI secretion system effector proteins: effective weapons for bacterial competitiveness. Cell Microbiol. 2020;22:e13241.

    CAS 
    PubMed 

    Google Scholar
     

  • 31.

    Jurėnas D, Journet L. Activity, delivery, and diversity of type VI secretion effectors. Mol Microbiol. 2021;115:383–94.

    PubMed 

    Google Scholar
     

  • 32.

    Smith WPJ, Vettiger A, Winter J, Ryser T, Comstock LE, Basler M, et al. The evolution of the type VI secretion system as a disintegration weapon. PLoS Biol. 2020;18:e3000720.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Santos MNM, Cho S-T, Wu C-F, Chang C-J, Kuo C-H, Lai E-M. Redundancy and specificity of type VI secretion vgrG loci in antibacterial activity of Agrobacterium tumefaciens 1D1609 strain. Front Microbiol. 2020;10:3004.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 34.

    Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture and applications. BMC Bioinformatics. 2009;10:421.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 35.

    Wu H-Y, Chung P-C, Shih H-W, Wen S-R, Lai E-M. Secretome analysis uncovers an Hcp-family protein secreted via a type VI secretion system in Agrobacterium tumefaciens. J Bacteriol. 2008;190:2841–50.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 36.

    Bondage DD, Lin J-S, Ma L-S, Kuo C-H, Lai E-M. VgrG C terminus confers the type VI effector transport specificity and is required for binding with PAAR and adaptor–effector complex. Proc Natl Acad Sci. 2016;113:E3931–40.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 37.

    Lin J-S, Ma L-S, Lai E-M. Systematic dissection of the Agrobacterium type VI secretion system reveals machinery and secreted components for subcomplex formation. PLoS One. 2013;8:e67647.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 38.

    Pukatzki S, Ma AT, Revel AT, Sturtevant D, Mekalanos JJ. Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin. Proc Natl Acad Sci. 2007;104:15508–13.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 39.

    Leiman PG, Basler M, Ramagopal UA, Bonanno JB, Sauder JM, Pukatzki S, et al. Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin. Proc Natl Acad Sci. 2009;106:4154–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 40.

    Wu C-F, Weisberg AJ, Davis EW, Chou L, Khan S, Lai E-M, et al. Diversification of the type VI secretion system in agrobacteria. mBio. 2021;12:e01927-21.

    PubMed Central 

    Google Scholar
     

  • 41.

    Liang X, Moore R, Wilton M, Wong MJQ, Lam L, Dong TG. Identification of divergent type VI secretion effectors using a conserved chaperone domain. Proc Natl Acad Sci. 2015;112:9106–11.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 42.

    Unterweger D, Kostiuk B, Ötjengerdes R, Wilton A, Diaz-Satizabal L, Pukatzki S. Chimeric adaptor proteins translocate diverse type VI secretion system effectors in Vibrio cholerae. EMBO J. 2015;34:2198–210.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 43.

    Weisberg AJ, Miller M, Ream W, Grünwald NJ, Chang JH. Diversification of plasmids in a genus of pathogenic and nitrogen-fixing bacteria. Philos Trans R Soc B Biol Sci. 2022;377:20200466.


    Google Scholar
     

  • 44.

    Li X, Tu H, Pan SQ. Agrobacterium delivers anchorage protein VirE3 for companion VirE2 to aggregate at host entry sites for T-DNA protection. Cell Rep. 2018;25:302–11.e6.

    CAS 
    PubMed 

    Google Scholar
     

  • 45.

    Jarchow E, Grimsley NH, Hohn B. virF, the host-range-determining virulence gene of Agrobacterium tumefaciens, affects T-DNA transfer to Zea mays. Proc Natl Acad Sci. 1991;88:10426–30.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 46.

    Vogel AM, Das A. The Agrobacterium tumefaciens virD3 gene is not essential for tumorigenicity on plants. J Bacteriol. 1992;174:5161–4.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 47.

    Lin T-S, Kado CI. The virD4 gene is required for virulence while virD3 and orf5 are not required for virulence of Agrobacterium tumefaciens. Mol Microbiol. 1993;9:803–12.

    CAS 
    PubMed 

    Google Scholar
     

  • 48.

    Pan SQ, Jin S, Boulton MI, Hawes M, Gordon MP, Nester EW. An Agrobacterium virulence factor encoded by a Ti plasmid gene or a chromosomal gene is required for T-DNA transfer into plants. Mol Microbiol. 1995;17:259–69.

    CAS 
    PubMed 

    Google Scholar
     

  • 49.

    Hwang H-H, Wu ET, Liu S-Y, Chang S-C, Tzeng K-C, Kado CI. Characterization and host range of five tumorigenic Agrobacterium tumefaciens strains and possible application in plant transient transformation assays. Plant Pathol. 2013;62:1384–97.

    CAS 

    Google Scholar
     

  • 50.

    de Lajudie PM, Andrews M, Ardley J, Eardly B, Jumas-Bilak E, Kuzmanović N, et al. Minimal standards for the description of new genera and species of rhizobia and agrobacteria. Int J Syst Evol Microbiol. 2019;69:1852–63.

    PubMed 

    Google Scholar
     

  • 51.

    Kuzmanović N, Puławska J, Prokić A, Ivanović M, Zlatković N, Jones JB, et al. Agrobacterium arsenijevicii sp. nov., isolated from crown gall tumors on raspberry and cherry plum. Syst Appl Microbiol. 2015;38:373–8.

    PubMed 

    Google Scholar
     

  • 52.

    Mousavi SA, Willems A, Nesme X, de Lajudie P, Lindström K. Revised phylogeny of Rhizobiaceae: proposal of the delineation of Pararhizobium gen. nov., and 13 new species combinations. Syst Appl Microbiol. 2015;38:84–90.

    PubMed 

    Google Scholar
     

  • 53.

    Mafakheri H, Taghavi SM, Puławska J, de Lajudie P, Lassalle F, Osdaghi E. Two novel genomospecies in the Agrobacterium tumefaciens species complex associated with rose crown gall. Phytopathology. 2019;109:1859–68.

    CAS 
    PubMed 

    Google Scholar
     

  • 54.

    Valdes Franco JA, Collier R, Wang Y, Huo N, Gu Y, Thilmony R, et al. Draft genome sequence of Agrobacterium rhizogenes strain NCPPB2659. Genome Announc. 2016;4:e00746-16.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 55.

    Singh NK, Lavire C, Nesme J, Vial L, Nesme X, Mason CE, et al. Comparative genomics of novel Agrobacterium G3 strains isolated from the International Space Station and description of Agrobacterium tomkonis sp. nov. Front Microbiol. 2021;12:3369.

  • 56.

    Hooykaas PJJ, Klapwijk PM, Nuti MP, Schilperoort RA, Rörsch A. Transfer of the Agrobacterium tumefaciens Ti plasmid to avirulent agrobacteria and to Rhizobium ex planta. J Gen Microbiol. 1977;98:477–84.


    Google Scholar
     

  • 57.

    Haryono M, Tsai Y-M, Lin C-T, Huang F-C, Ye Y-C, Deng W-L, et al. Presence of an Agrobacterium-type tumor-inducing plasmid in Neorhizobium sp. NCHU2750 and the link to phytopathogenicity. Genome Biol Evol. 2018;10:3188–95.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 58.

    Rathore DS, Mullins E. Alternative non-Agrobacterium based methods for plant transformation. In: Roberts JA, editor. Annu Plant Rev Online. Hoboken, New Jersey: John Wiley & Sons, Ltd.; 2018. p. 891–908. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119312994.apr0659.


    Google Scholar
     

  • 59.

    Barco RA, Garrity GM, Scott JJ, Amend JP, Nealson KH, Emerson D. A genus definition for Bacteria and Archaea based on a standard genome relatedness index. mBio. 2020;11:e02475-19.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 60.

    Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil P-A, et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol. 2018;36:996–1004.

    CAS 
    PubMed 

    Google Scholar
     

  • 61.

    Parks DH, Chuvochina M, Chaumeil P-A, Rinke C, Mussig AJ, Hugenholtz P. A complete domain-to-species taxonomy for Bacteria and Archaea. Nat Biotechnol. 2020;38:1079–86.

    CAS 
    PubMed 

    Google Scholar
     

  • 62.

    Kuo C-H, Ochman H. Inferring clocks when lacking rocks: the variable rates of molecular evolution in bacteria. Biol Direct. 2009;4:35.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 63.

    Okasha S. Evolution and the Levels of Selection. Oxford: Oxford University Press; 2006. Available from: https://oxford.universitypressscholarship.com/view/10.1093/acprof:oso/9780199267972.001.0001/acprof-9780199267972

  • 64.

    Daubin V, Moran NA, Ochman H. Phylogenetics and the cohesion of bacterial genomes. Science. 2003;301:829–32.

    CAS 
    PubMed 

    Google Scholar
     

  • 65.

    Choi I-G, Kim S-H. Global extent of horizontal gene transfer. Proc Natl Acad Sci. 2007;104:4489–94.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 66.

    Ochman H, Lawrence JG, Groisman EA. Lateral gene transfer and the nature of bacterial innovation. Nature. 2000;405:299–304.

    CAS 
    PubMed 

    Google Scholar
     

  • 67.

    Dagan T, Artzy-Randrup Y, Martin W. Modular networks and cumulative impact of lateral transfer in prokaryote genome evolution. Proc Natl Acad Sci. 2008;105:10039–44.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 68.

    Chan CX, Beiko RG, Darling AE, Ragan MA. Lateral transfer of genes and gene fragments in prokaryotes. Genome Biol Evol. 2009;1:429–38.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 69.

    Pál C, Papp B, Lercher MJ. Adaptive evolution of bacterial metabolic networks by horizontal gene transfer. Nat Genet. 2005;37:1372–5.

    PubMed 

    Google Scholar
     

  • 70.

    Kuo C-H, Ochman H. The fate of new bacterial genes. FEMS Microbiol Rev. 2009;33:38–43.

    CAS 
    PubMed 

    Google Scholar
     

  • 71.

    Wiedenbeck J, Cohan FM. Origins of bacterial diversity through horizontal genetic transfer and adaptation to new ecological niches. FEMS Microbiol Rev. 2011;35:957–76.

    CAS 
    PubMed 

    Google Scholar
     

  • 72.

    Mira A, Ochman H, Moran NA. Deletional bias and the evolution of bacterial genomes. Trends Genet. 2001;17:589–96.

    CAS 
    PubMed 

    Google Scholar
     

  • 73.

    Kuo C-H, Ochman H. Deletional bias across the three domains of life. Genome Biol Evol. 2009;1:145–52.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 74.

    Sundin GW. Genomic insights into the contribution of phytopathogenic bacterial plasmids to the evolutionary history of their hosts. Annu Rev Phytopathol. 2007;45:129–51.

    CAS 
    PubMed 

    Google Scholar
     

  • 75.

    Bennett PM. Plasmid encoded antibiotic resistance: acquisition and transfer of antibiotic resistance genes in bacteria. Br J Pharmacol. 2009;153:S347–57.


    Google Scholar
     

  • 76.

    Smillie C, Garcillán-Barcia MP, Francia MV, Rocha EPC, de la Cruz F. Mobility of plasmids. Microbiol Mol Biol Rev. 2010;74:434–52.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 77.

    Redondo-Salvo S, Fernández-López R, Ruiz R, Vielva L, de Toro M, Rocha EPC, et al. Pathways for horizontal gene transfer in bacteria revealed by a global map of their plasmids. Nat Commun. 2020;11:3602.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 78.

    Ramírez-Bahena MH, Vial L, Lassalle F, Diel B, Chapulliot D, Daubin V, et al. Single acquisition of protelomerase gave rise to speciation of a large and diverse clade within the Agrobacterium/Rhizobium supercluster characterized by the presence of a linear chromid. Mol Phylogenet Evol. 2014;73:202–7.

    PubMed 

    Google Scholar
     

  • 79.

    Treangen TJ, Rocha EPC. Horizontal transfer, not duplication, drives the expansion of protein families in prokaryotes. PLoS Genet. 2011;7:e1001284.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 80.

    Huang Y-Y, Cho S-T, Lo W-S, Wang Y-C, Lai E-M, Kuo C-H. Complete genome sequence of Agrobacterium tumefaciens Ach5. Genome Announc. 2015;3:e00570-15.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 81.

    Cho S-T, Haryono M, Chang H-H, Santos MNM, Lai E-M, Kuo C-H. Complete genome sequence of Agrobacterium tumefaciens 1D1609. Genome Announc. 2018;6:e00253-18.

    PubMed 

    Google Scholar
     

  • 82.

    Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 2008;18:821–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 83.

    Darling ACE, Mau B, Blattner FR, Perna NT. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 2004;14:1394–403.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 84.

    Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 2016;44:6614–24.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 85.

    Lo W-S, Chen L-L, Chung W-C, Gasparich GE, Kuo C-H. Comparative genome analysis of Spiroplasma melliferum IPMB4A, a honeybee-associated bacterium. BMC Genomics. 2013;14:22.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 86.

    Lo W-S, Gasparich GE, Kuo C-H. Convergent evolution among ruminant-pathogenic Mycoplasma involved extensive gene content changes. Genome Biol Evol. 2018;10:2130–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 87.

    Cho S-T, Kung H-J, Huang W, Hogenhout SA, Kuo C-H. Species boundaries and molecular markers for the classification of 16SrI phytoplasmas inferred by genome analysis. Front Microbiol. 2020;11:1531.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 88.

    Guy L, Roat Kultima J, Andersson SGE. genoPlotR: comparative gene and genome visualization in R. Bioinformatics. 2010;26:2334–5.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 89.

    Li L, Stoeckert CJ, Roos DS. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res. 2003;13:2178–89.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 90.

    Popescu A-A, Huber KT, Paradis E. ape 3.0: New tools for distance-based phylogenetics and evolutionary analysis in R. Bioinformatics. 2012;28:1536–7.

    CAS 
    PubMed 

    Google Scholar
     

  • 91.

    Wickham H. ggplot2: Elegant Graphics for Data Analysis. New York, NY: Springer-Verlag New York; 2016. Available from: https://ggplot2.tidyverse.org.


    Google Scholar
     

  • 92.

    Suzuki R, Shimodaira H. Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinformatics. 2006;22:1540–2.

    CAS 
    PubMed 

    Google Scholar
     

  • 93.

    Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 94.

    Guindon S, Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol. 2003;52:696–704.

    PubMed 

    Google Scholar
     

  • 95.

    Marchler-Bauer A, Zheng C, Chitsaz F, Derbyshire MK, Geer LY, Geer RC, et al. CDD: conserved domains and protein three-dimensional structure. Nucleic Acids Res. 2013;41:D348–52.

    CAS 
    PubMed 

    Google Scholar
     

  • 96.

    Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc. 2015;10:845–58.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 97.

    Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, et al. MEME Suite: tools for motif discovery and searching. Nucleic Acids Res. 2009;37:W202–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 98.

    Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ. Jalview version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics. 2009;25:1189–91.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 99.

    Crooks GE, Hon G, Chandonia J-M, Brenner SE. WebLogo: a sequence logo generator. Genome Res. 2004;14:1188–90.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 100.

    Conner AJ, Barrell PJ, Baldwin SJ, Lokerse AS, Cooper PA, Erasmuson AK, et al. Intragenic vectors for gene transfer without foreign DNA. Euphytica. 2007;154:341–53.

    CAS 

    Google Scholar
     

  • 101.

    Vladimirov IA, Matveeva TV, Lutova LA. Opine biosynthesis and catabolism genes of Agrobacterium tumefaciens and Agrobacterium rhizogenes. Russ J Genet. 2015;51:121–9.

    CAS 

    Google Scholar
     

  • 102.

    Bhatty M, Laverde Gomez JA, Christie PJ. The expanding bacterial type IV secretion lexicon. Res Microbiol. 2013;164:620–39.

    CAS 
    PubMed 

    Google Scholar
     

  • 103.

    Wang Y, Wei X, Bao H, Liu S-L. Prediction of bacterial type IV secreted effectors by C-terminal features. BMC Genomics. 2014;15:50.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 104.

    Eichinger V, Nussbaumer T, Platzer A, Jehl M-A, Arnold R, Rattei T. EffectiveDB—updates and novel features for a better annotation of bacterial secreted proteins and Type III, IV, VI secretion systems. Nucleic Acids Res. 2016;44:D669–74.

    CAS 
    PubMed 

    Google Scholar
     

  • 105.

    Wu H-Y, Chen C-Y, Lai E-M. Expression and functional characterization of the Agrobacterium VirB2 amino acid substitution variants in T-pilus biogenesis, virulence, and transient transformation efficiency. PLoS One. 2014;9:e101142.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.biomedcentral.com/)