• 1.

    Nawaz S, Schweitzer J, Jahn O, Werner HB (2013) Molecular evolution of myelin basic protein, an abundant structural myelin component. GLIA 61(8):1364–1377. https://doi.org/10.1002/glia.22520

    Article 

    Google Scholar
     

  • 2.

    Watanabe T (2018) The Cell. In: Watanebe T (ed) Biophysical basis of physiology and calcium signaling mechanism in cardiac and smooth muscle. Elsevier, pp 99–137. https://doi.org/10.1016/B978-0-12-814950-8.00004-4

    Chapter 

    Google Scholar
     

  • 3.

    Yergert KM, Doll CA, O’Rouke R, Hines JH, Appel B (2021) Identification of 3′ UTR motifs required for mRNA localization to myelin sheaths in vivo. PLoS Biol 19(1):e3001053. https://doi.org/10.1101/654616

    Article 

    Google Scholar
     

  • 4.

    Baraban M, Mensch S, Lyons DA (2016) Adaptive myelination from fish to man. Brain Res 1641:149–161. https://doi.org/10.1016/j.brainres.2015.10.026

    Article 

    Google Scholar
     

  • 5.

    Kirschner DA, Karthigesan J, Bizzozero OA, Kosaras B, Inouye H (2008) Myelin structure and composition of myelinated tissue in the African lungfish. Neuron Glia Biol 4(2):59–70. https://doi.org/10.1017/S1740925X09990196

    Article 

    Google Scholar
     

  • 6.

    Kumar S, Sharma B, Bhadwal P, Sharma P, Agnihotri N (2018) Lipids as nutraceuticals: a shift in paradigm. In: Holban AM, Grumezescu AM (eds) Handbook of food bioengineering, therapeutic foods. Academic, pp 51–98. https://doi.org/10.1016/B978-0-12-811517-6.00003-9

    Chapter 

    Google Scholar
     

  • 7.

    Boggs JM (2006) Myelin basic protein: a multifunctional protein. Cellular Mol Life Sci CMLS 63(17):1945–1961. https://doi.org/10.1007/s00018-006-6094-7

    Article 

    Google Scholar
     

  • 8.

    Brösamle C, Halpern ME (2002) Characterization of myelination in the developing zebrafish. Glia 39(1):47–57. https://doi.org/10.1002/glia.10088

    Article 

    Google Scholar
     

  • 9.

    Zhou L, Li CJ, Wang Y, Xia W, Yao B, Jin JY, Gui JF (2007) Identification and characterization of a MBP isoform specific to hypothalamus in orange-spotted grouper (Epinephelus coioides). J Chem Neuroanat 34(1-2):47–59. https://doi.org/10.1016/j.jchemneu.2007.03.011

    Article 

    Google Scholar
     

  • 10.

    Steshenko O, Andrade DM, Honigmann A, Mueller V, Schneider F, Sezgin E, Hell SW, Simons M, Eggeling C (2016) Reorganization of lipid diffusion by myelin basic protein as revealed by STED nanoscopy. Biophys J 110(11):2441–2450. https://doi.org/10.1016/j.bpj.2016.04.047

    Article 

    Google Scholar
     

  • 11.

    Harauz G, Ladizhansky V, Boggs JM (2009) Structural polymorphism and multifunctionality of myelin basic protein. Biochemistry 48(34):8094–8104. https://doi.org/10.1021/bi901005f

    Article 

    Google Scholar
     

  • 12.

    Zuchero JB, Fu MM, Sloan SA, Ibrahim A, Olson A, Zaremba A, Dugas JC, Wienbar S, Caprariello AV, Kantor C et al (2016) CNS myelin wrapping is driven by actin disassembly. Dev Cell 34(2):152–167. https://doi.org/10.1016/j.devcel.2015.06.01

    Article 

    Google Scholar
     

  • 13.

    D’ Amora M., Giordani S. (2018) The utility of zebrafish as a model for screening developmental neurotoxicity. Front Neurosci 12. https://doi.org/10.3389/fnins.2018.00976

  • 14.

    Halstrom A, MacDonald E, Neil C, Arendts G, Fatovich D, Fitzgerald M (2017) Elevation of oxidative stress indicators in a pilot study of plasma following traumatic brain injury. J Clin Neurosci 35:104–108. https://doi.org/10.1016/j.jocn.2016.09.006

    Article 

    Google Scholar
     

  • 15.

    Mehta T, Fayyaz M, Giler GE, Kaur H, Raikwar SP, Kempuraj D, Selvakumar GP, Ahmed ME, Thangavel R, Zaheer S (2020) Current trends in biomarkers for traumatic brain injury. Open Access J Neurol Neurosurg 12(4):86


    Google Scholar
     

  • 16.

    Schartl M (2014) Beyond the zebrafish: diverse fish species for modeling human disease. Dis Model Mech 7(2):181–192


    Google Scholar
     

  • 17.

    Lust K, Tanaka EM (2019) A comparative perspective on brain regeneration in amphibians and teleost fish. Dev Neurobiol 79(5):424–436

    Article 

    Google Scholar
     

  • 18.

    Holguín-Céspedes GK, Millán-Ocampo LM, Mahecha-Méndez EJ, Céspedes-Rubio ÁE, Rondón-Barragán IS (2019) Toxicity assessment of chlorpyrifos in red-bellied pacu fingerlings (Piaractus brachypomus). Revista Internacional de Contaminación Ambiental 35(4):815–829. https://doi.org/10.20937/RICA.2019.35.04.04

    Article 

    Google Scholar
     

  • 19.

    Marín-Mendez G, Torres-Cortes A, Naranjo-Suarez L, Chacón-Novoa R, Rondón-Barragan I (2012) Concentración letal 50 a 96 horas de eugenol en cachama blanca (Piaractus brachypomus). ORINOQUIA 16(2):62–66 http://www.scielo.org.co/pdf/rori/v16n2/v16n2a07.pdf

    Article 

    Google Scholar
     

  • 20.

    Mesa-Granda M, Botero-Aguirre M (2007) La cachama blanca (Piaractus brachypomus), una especie potencial para el mejoramiento genético. Revista Colombiana de Ciencias Pecuarias 20:79–86


    Google Scholar
     

  • 21.

    Naranjo-Gómez JS, Vargas-Rojas LF, Rondón-Barragán IS (2013) Toxicidad aguda de cloruro de mercurio (HGCL2) en Cachama blanca: Piaractus brachypomus (Cuvier, 1818). Actualidades Biológicas 35(98):85–93


    Google Scholar
     

  • 22.

    Brattelid T, Smith AJ (2000) Methods of positioning fish for surgery or other procedures out of water. Lab Anim 34(4):430–433. https://doi.org/10.1258/002367700780387660

    Article 

    Google Scholar
     

  • 23.

    Jenkins JA, Chair HL, Bart J, Bowker JD, Bowser PR, MacMillan JR, Nickum JG, Rose JD, Sorensen PW, Whitledge GW, Rachlin JW, Warkentine BE, Bart HL (2014) Guidelines for the use of fishes in research. American Fisheries Society, Bethesda

    Book 

    Google Scholar
     

  • 24.

    Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C et al (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28(12):1647–1649. https://doi.org/10.1093/bioinformatics/bts199

    Article 

    Google Scholar
     

  • 25.

    Blum M, Chang HY, Chuguransky S, Grego T, Kandasaamy S, Mitchell A, Nuka G, Paysan-Lafosse T, Qureshi M, Raj S et al (2021) The InterPro protein families and domains database: 20 years on. Nucleic Acids Res 49(D1):D344–D354. https://doi.org/10.1093/nar/gkaa977

    Article 

    Google Scholar
     

  • 26.

    Necci M, Piovesan D, Dosztányi Z, Tosatto SC (2017) MobiDB-lite: fast and highly specific consensus prediction of intrinsic disorder in proteins. Bioinformatics 33(9):1402–1404. https://doi.org/10.1093/bioinformatics/btx015

    Article 

    Google Scholar
     

  • 27.

    Gasteiger E, Hoogland C, Gattiker A, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook. Human Press, pp 571–607. https://doi.org/10.1385/1-59259-890-0:571

    Chapter 

    Google Scholar
     

  • 28.

    Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454

    Article 

    Google Scholar
     

  • 29.

    Jukes TH, Cantor CR (1969) Evolution of protein molecules. Mammalian Prot Metab 3:21–132. https://doi.org/10.1016/b978-1-4832-3211-9.50009-7

    Article 

    Google Scholar
     

  • 30.

    Vargas-Vargas RA (2017) Pez cebra (Danio rerio) y anestesia. Un modelo animal alternativo para realizar investigación biomédica básica. Anestesia en México (29):86–96 http://www.scielo.org.mx/pdf/am/v29s1/2448-8771-am-29-00086.pdf

  • 31.

    CCAC (2010) CCAC guidelines on: Euthanasia of animals used in science. Canadian Council on Animal Care (CCAC), Ottawa, p 36


    Google Scholar
     

  • 32.

    Zapata-Guerra NA, Rueda-Gómez DS, Lozano-Villegas KJ, Herrera-Sánchez MP, Uribe-García HF, Rondón-Barragán IS (2020) Menthol as anaesthetic for red-bellied pacu (Piaractus brachypomus) and its effect on HIF1a and GlucoR gene expression. Aquac Res 51(11):4421–4429. https://doi.org/10.1111/are.14784

    Article 

    Google Scholar
     

  • 33.

    Kishimoto N, Shimizu K, Sawamoto K (2012) Neuronal regeneration in a zebrafish model of adult brain injury. DMM Dis Models Mechan 5(2):200–209. https://doi.org/10.1242/dmm.007336

    Article 

    Google Scholar
     

  • 34.

    Schmidt R, Beil T, Strähle U, Rastegar S (2014) Stab wound injury of the zebrafish adult telencephalon: a method to investigate vertebrate brain neurogenesis and regeneration. J Vis Exp 90(90):51753. https://doi.org/10.3791/51753

    Article 

    Google Scholar
     

  • 35.

    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262

    Article 

    Google Scholar
     

  • 36.

    Ridsdale RA, Beniac DR, Tompkins TA, Moscarello MA, Harauz G (1997) Three-dimensional structure of myelin basic protein: II. Molecular modeling and considerations of predicted structures in multiple sclerosis. J Biol Chem 272(7):4269–4275. https://doi.org/10.1074/jbc.272.7.4269

    Article 

    Google Scholar
     

  • 37.

    Zhang J, Sun X, Zheng S, Liu X, Jin J, Ren Y, Luo J (2014) Myelin basic protein induces neuron-specific toxicity by directly damaging the neuronal plasma membrane. PLoS One 9(9):e108646. https://doi.org/10.1371/journal.pone.0108646

    Article 

    Google Scholar
     

  • 38.

    Casey JR, Grinstein S, Orlowski J (2010) Sensors and regulators of intracellular pH. Nat Rev Mol Cell Biol 11(1):50–61. https://doi.org/10.1038/nrm2820

    Article 

    Google Scholar
     

  • 39.

    Nawaz S, Kippert A, Saab AS, Werner HB, Lang T, Nave KA, Simons M (2009) Phosphatidylinositol 4, 5-bisphosphate-dependent interaction of myelin basic protein with the plasma membrane in oligodendroglial cells and its rapid perturbation by elevated calcium. J Neurosci 29(15):4794–4807. https://doi.org/10.1523/JNEUROSCI.3955-08.2009

    Article 

    Google Scholar
     

  • 40.

    Min Y, Kristiansen K, Boggs JM, Husted C, Zasadzinski JA, Israelachvili J (2009) Interaction forces and adhesion of supported myelin lipid bilayers modulated by myelin basic protein. Proc Natl Acad Sci 106(9):3154–3159. https://doi.org/10.1073/pnas.0813110106

    Article 

    Google Scholar
     

  • 41.

    Guruprasad K, Reddy BB, Pandit MW (1990) Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Eng Des Sel 4(2):155–161. https://doi.org/10.1093/protein/4.2.155

    Article 

    Google Scholar
     

  • 42.

    O’Brien JS (1965) Stability of the myelin membrane: lipid molecules may impart stability to the myelin membrane through intermolecular cohesion. Science 147(3662):1099–1107. https://doi.org/10.1126/science.147.3662.1099

    Article 

    Google Scholar
     

  • 43.

    Poitelon Y, Kopec AM, Belin S (2020) Myelin fat facts: an overview of lipids and fatty acid metabolism. Cells 9(4):812. https://doi.org/10.3390/cells9040812

    Article 

    Google Scholar
     

  • 44.

    Valdivia AO, Agarwal PK, Bhattacharya SK (2020) Myelin basic protein phospholipid complexation likely competes with deimination in experimental autoimmune encephalomyelitis mouse model. ACS Omega 5(25):15454–15467. https://doi.org/10.1021/acsomega.0c01590

    Article 

    Google Scholar
     

  • 45.

    Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157(1):105–132. https://doi.org/10.1016/0022-2836(82)90515-0

    Article 

    Google Scholar
     

  • 46.

    Glushakova OY, Glushakov AV, Mannix R, Miller ER, Valadka AB, Hayes RL. 2018. The use of blood-based biomarkers to improve the design of clinical trials of traumatic brain injury. In Skolnick BE, Alves WM. (Eds.), Handbook of neuroemergency clinical trials. Elsevier: Academic, pps. 139-166. https://doi.org/10.1016/B978-0-12-804064-5.00008-4

  • 47.

    Saavedra RA, Fors L, Aebersold RH, Arden B, Horvath S, Sanders J, Hood L (1989) The myelin proteins of the shark brain are similar to the myelin proteins of the mammalian peripheral nervous system. J Mol Evol 29(2):149–156. https://doi.org/10.1007/BF02100113

    Article 

    Google Scholar
     

  • 48.

    Harauz G, Ishiyama N, Hill CM, Bates IR, Libich DS, Fares C (2004) Myelin basic protein-diverse conformational states of an intrinsically unstructured protein and its roles in myelin assembly and multiple sclerosis. Micron 35(7):503–542. https://doi.org/10.1016/j.micron.2004.04.005

    Article 

    Google Scholar
     

  • 49.

    Harauz G, Libich DS (2009) The classic basic protein of myelin-conserved structural motifs and the dynamic molecular barcode involved in membrane adhesion and protein-protein interactions. Curr Protein Pept Sci 10(3):196–215. https://doi.org/10.2174/138920309788452218

    Article 

    Google Scholar
     

  • 50.

    Bamm VV, De Avila M, Smith GS, Ahmed MA, Harauz G (2011) Structured functional domains of myelin basic protein: cross talk between actin polymerization and Ca2+-dependent calmodulin interaction. Biophys J 101(5):1248–1256. https://doi.org/10.1016/j.bpj.2011.07.035

    Article 

    Google Scholar
     

  • 51.

    Polverini E, Rangaraj G, Libich DS, Boggs JM, Harauz G (2008) Binding of the proline-rich segment of myelin basic protein to SH3 domains: spectroscopic, microarray, and modeling studies of ligand conformation and effects of posttranslational modifications. Biochemistry 47(1):267–282. https://doi.org/10.1021/bi701336n

    Article 

    Google Scholar
     

  • 52.

    Hirschberg D, Rådmark O, Jörnvall H, Bergman T (2003) Thr94 in bovine myelin basic protein is a second phosphorylation site for 42-kDa mitogen-activated protein kinase (ERK2). J Protein Chem 22(2):177–181. https://doi.org/10.1023/a:1023479131488

    Article 

    Google Scholar
     

  • 53.

    Stoner GL (1990) Conservation throughout vertebrate evolution of the predicted β-strands in myelin basic protein. J Neurochem 55(4):1404–1411. https://doi.org/10.1111/j.1471-4159.1990.tb03153.x

    Article 

    Google Scholar
     

  • 54.

    Wucherpfennig KW, Catz I, Hausmann S, Strominger JL, Steinman L, Warren KG (1997) Recognition of the immunodominant myelin basic protein peptide by autoantibodies and HLA-DR2-restricted T cell clones from multiple sclerosis patients. Identity of key contact residues in the B-cell and T-cell epitopes. J Clin Invest 100(5):1114–1122. https://doi.org/10.1172/JCI119622

    Article 

    Google Scholar
     

  • 55.

    Bullock TH, Moore JK, Fields RD (1984) Evolution of myelin sheaths: both lamprey and hagfish lack myelin. Neurosci Lett 48(2):145–148. https://doi.org/10.1016/0304-3940(84)90010-7

    Article 

    Google Scholar
     

  • 56.

    Liu HB, MacKenzie-Graham AJ, Palaszynski K, Liva S, Voskuhl RR (2001) “Classic” myelin basic proteins are expressed in lymphoid tissue macrophages. J Neuroimmunol 116(1):83–93. https://doi.org/10.1016/S0165-5728(01)00284-3

    Article 

    Google Scholar
     

  • 57.

    Kalwy S, Marty MC, Bausero P, Pessac B (1998) Myelin basic protein-related proteins in mouse brain and immune tissues. J Neurochem 70(1):435–438. https://doi.org/10.1046/j.1471-4159.1998.70010435.x

    Article 

    Google Scholar
     

  • 58.

    Marty MC, Alliot F, Rutin J, Fritz R, Trisler D, Pessac B (2002) The myelin basic protein gene is expressed in differentiated blood cell lineages and in hemopoietic progenitors. Proc Natl Acad Sci 99(13):8856–8861. https://doi.org/10.1073/pnas.122079599

    Article 

    Google Scholar
     

  • 59.

    Torvund-Jensen J, Steengaard J, Askebjerg LB, Kjaer-Sorensen K, Laursen LS (2018) The 3’UTRs of myelin basic protein mRNAs regulate transport, local translation and sensitivity to neuronal activity in zebrafish. Front Mol Neurosci 11:185. https://doi.org/10.3389/fnmol.2018.00185

    Article 

    Google Scholar
     

  • 60.

    Gandhi S, Abramov AY (2012) Mechanism of oxidative stress in neurodegeneration. Oxidative Med Cell Longev 2012. https://doi.org/10.1155/2012/428010

  • 61.

    Tarulli A (2021) Disorders of the eyelids and pupils. In: Neurology. Springer, Cham, pp 107–114. https://doi.org/10.1007/978-3-030-55598-6_7

    Chapter 

    Google Scholar
     

  • 62.

    ur Rahman HU, Asghar W, Nazir W, Sandhu MA, Ahmed A, Khalid N (2020) A comprehensive review on chlorpyrifos toxicity with special reference to endocrine disruption: evidence of mechanisms, exposures and mitigation strategies. Sci Total Environ 142649. https://doi.org/10.1016/j.scitotenv.2020.142649

  • 63.

    Tapiero-Hernández Y, Rondon-Barragán I, Cespedes-Rubio A (2013) Neurotoxic potential of trichlorfon to multiple sublethal doses in wistar rats. Acta Biológica Colombiana 18(3):479–488


    Google Scholar
     

  • 64.

    Thrasher JD, Madison R, Broughton A (1993) Immunologic abnormalities in humans exposed to chlorpyrifos: preliminary observations. Arch Environ Health Int J 48(2):89–93. https://doi.org/10.1080/00039896.1993.9938400

    Article 

    Google Scholar
     

  • 65.

    García-Gonzalez D, Murcia-Belmonte V, Clemente D, De Castro F (2013) Olfactory system and demyelination. Anat Rec 296(9):1424–1434. https://doi.org/10.1002/ar.22736

    Article 

    Google Scholar
     

  • 66.

    Haines DE, Mihailoff GA (2018) Chapter 16 – the telencephalon. In: Haines DE, Mihailoff GA (eds) Fundamental neuroscience for basic and clinical applications (fifth edition). Elsevier, pp 225–240.e221. https://doi.org/10.1016/b978-0-323-39632-5.00016-5

    Chapter 

    Google Scholar
     

  • 67.

    El-Hossary GG, Mansour SM, Mohamed AS (2009) Neurotoxic effects of chlorpyrifos and the possible protective role of antioxidant supplements: an experimental study. J Appl Sci Res 5(9):1218–1222

  • 68.

    Pott F, Gingele S, Clarner T, Dang J, Baumgartner W, Beyer C, Kipp M (2009) Cuprizone effect on myelination, astrogliosis and microglia attraction in the mouse basal ganglia. Brain Res 1305:137–149. https://doi.org/10.1016/j.brainres.2009.09.084

    Article 

    Google Scholar
     

  • 69.

    Millet V, Marder M, Pasquini LA (2012) Adult CNP: EGFP transgenic mouse shows pronounced hypomyelination and an increased vulnerability to cuprizone-induced demyelination. Exp Neurol 233(1):490–504. https://doi.org/10.1016/j.expneurol.2011.11.028

    Article 

    Google Scholar
     

  • 70.

    Hanafy KA, Sloane JA (2011) Regulation of remyelination in multiple sclerosis. FEBS Lett 585(23):3821–3828. https://doi.org/10.1016/j.febslet.2011.03.048

    Article 

    Google Scholar
     

  • 71.

    Betancourt AM, Burgess SC, Carr RL (2006) Effect of developmental exposure to chlorpyrifos on the expression of neurotrophin growth factors and cell-specific markers in neonatal rat brain. Toxicol Sci 92(2):500–506. https://doi.org/10.1093/toxsci/kfl004

    Article 

    Google Scholar
     

  • 72.

    Garcia SJ, Seidler FJ, Slotkin TA (2003) Developmental neurotoxicity elicited by prenatal or postnatal chlorpyrifos exposure: effects on neurospecific proteins indicate changing vulnerabilities. Environ Health Perspect 111(3):297–303. https://doi.org/10.1289/ehp.5791

    Article 

    Google Scholar
     

  • 73.

    Slotkin TA, Seidler FJ (2007) Comparative developmental neurotoxicity of organophosphates in vivo: transcriptional responses of pathways for brain cell development, cell signaling, cytotoxicity and neurotransmitter systems. Brain Res Bull 72(4-6):232–274. https://doi.org/10.1016/j.brainresbull.2007.01.005

    Article 

    Google Scholar
     

  • 74.

    Priborsky J, Velisek J (2018) A review of three commonly used fish anesthetics. Rev Fisheries Sci Aquacult 26(4):417–442. https://doi.org/10.1080/23308249.2018.1442812

    Article 

    Google Scholar
     

  • 75.

    Martins T, Valentim A, Pereira N, Antunes LM (2019) Anaesthetics and analgesics used in adult fish for research: a review. Lab Anim 53(4):325–341. https://doi.org/10.1177/0023677218815199

    Article 

    Google Scholar
     

  • 76.

    Neiffer DL, Stamper MA (2009) Fish sedation, anesthesia, analgesia, and euthanasia: considerations, methods, and types of drugs. ILAR J 50(4):343–360. https://doi.org/10.1093/ilar.50.4.343

    Article 

    Google Scholar
     

  • 77.

    Mateu L, Moran O, Padrón R, Borgo M, Vonasek E, Marquez G, Luzzati V (1997) The action of local anesthetics on myelin structure and nerve conduction in toad sciatic nerve. Biophys J 72(6):2581–2587. https://doi.org/10.1016/S0006-3495(97)78901-X

    Article 

    Google Scholar
     

  • 78.

    Galgano M, Toshkezi G, Qiu X, Russell T, Chin L, Zhao LR (2017) Traumatic brain injury: current treatment strategies and future endeavors. Cell Transplant 26(7):1118–1130. https://doi.org/10.1177/0963689717714102

    Article 

    Google Scholar
     

  • 79.

    Cho SJ, Park E, Telliyan T, Baker A, Reid AY (2020) Zebrafish model of posttraumatic epilepsy. Epilepsia 61(8):1774–1785

    Article 

    Google Scholar
     

  • 80.

    Cacialli P, D’angelo L, Kah O, Coumailleau P, Gueguen MM, Pellegrini E, Lucini C (2018) Neuronal expression of brain derived neurotrophic factor in the injured telencephalon of adult zebrafish. J Comp Neurol 526(4):569–582

    Article 

    Google Scholar
     

  • 81.

    Maheras AL, Dix B, Carmo OMS, Young AE, Gill VN, Sun JL, Booker AR, Thomason HA, Ibrahim AE, Stanislaw L et al (2018) Genetic pathways of neuroregeneration in a novel mild traumatic brain injury model in adult zebrafish. ENeuro 5(1). https://doi.org/10.1523/ENEURO.0208-17.2017

  • 82.

    Taib T, Leconte C, Van Steenwinckel J, Cho AH, Palmier B, Torsello E, Kuen RL, Onyeomah S, Ecomard K, Benedetto C et al (2017) Neuroinflammation, myelin and behavior: temporal patterns following mild traumatic brain injury in mice. PLoS One 12(9):e0184811. https://doi.org/10.1371/journal.pone.0184811

    Article 

    Google Scholar
     

  • 83.

    Mierzwa AJ, Marion CM, Sullivan GM, McDaniel DP, Armstrong RC (2015) Components of myelin damage and repair in the progression of white matter pathology after mild traumatic brain injury. J Neuropathol Exp Neurol 74(3):218–232. https://doi.org/10.1097/nen.0000000000000165

    Article 

    Google Scholar
     

  • 84.

    Berger RP, Adelson PD, Pierce MC, Dulani T, Cassidy LD, Kochanek PM (2005) Serum neuron-specific enolase, S100B, and myelin basic protein concentrations after inflicted and noninflicted traumatic brain injury in children. J Neurosurg Pediatr 103(1):61–68. https://doi.org/10.3171/ped.2005.103.1.0061

    Article 

    Google Scholar
     

  • 85.

    Kim HJ, Tsao JW, Stanfill AG (2018) The current state of biomarkers of mild traumatic brain injury. JCI insight 3(1). https://doi.org/10.1172/jci.insight.97105

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.springeropen.com/)