• 1.

    Xu M, Xu Z, Liu B, Kong F, Tsubokura Y, Watanabe S, Xia Z et al (2013) Genetic variation in four maturity genes affects photoperiod insensitivity and PHYA-regulated post-flowering responses of soybean. BMC Plant Biol 13:91–105. https://doi.org/10.1186/1471-2229-13-91

    Article 

    Google Scholar
     

  • 2.

    Sharrock RA, Mathews S (2006) Phytochrome genes in higher plants: structure, expression, and evolution. In: Photomorphogenes in plants and bacteria. Kluwer Academic Publishers, Dordrecht. https://doi.org/10.1007/1-4020-3811-9_7

    Chapter 

    Google Scholar
     

  • 3.

    Watanabe S, Hideshima R, Zhengjun X, Tsubokura Y, Sato S, Nakamoto Y, Yamanaka N et al (2009) Map-based cloning of the gene associated with the soybean maturity locus E3. Genetics 182:1251–1262. https://doi.org/10.1534/Genetics.108.098772

    Article 

    Google Scholar
     

  • 4.

    Weller JL, Ortega R (2015) Genetic control of flowering time in legumes. Front Plant Sci. https://doi.org/10.3389/Fpls.2015.00207

  • 5.

    Cronk Q, Ojeda I, Pennington RT (2006) Legume comparative genomics: progress in phylogenetics and phylogenomics. Curr Opin Plant Biol 9:99–103. https://doi.org/10.1016/j.Pbi.2006.01.01

    Article 

    Google Scholar
     

  • 6.

    Clack T, Mathews S, Sharrock RA (1994) The phytochrome apoprotein family in Arabidopsis is encoded by five genes: the sequences and expression of PHYD andPHYE. Plant Mol Biol 25:413–427. https://doi.org/10.1007/BF00043870

    Article 

    Google Scholar
     

  • 7.

    Sharrock RA, Quail PH (1989) Novel phytochrome sequences in Arabidopsis thaliana: structure, evolution, and differential expression of a plant regulatory photoreceptor family. Genes Dev 3:1745–1757. https://doi.org/10.1101/Gad.3.11.1745

    Article 

    Google Scholar
     

  • 8.

    Bernard RL (1971) Two major genes for time of flowering and maturity in soybeans 1. Crop Sci 11:242–244. https://doi.org/10.2135/Cropsci1971.0011183X001100020022x

    Article 

    Google Scholar
     

  • 9.

    Bonato ER, Vello NA (1999) E6, a dominant gene conditioning early flowering and maturity in soybeans. Genet Mol Biol 22:229–232. https://doi.org/10.1590/S1415-47571999000200016

    Article 

    Google Scholar
     

  • 10.

    Buzzell RI (1971) Inheritance of a soybean flowering response to fluorescent daylength conditions. Can J Genet Cytol 13:703–707. https://doi.org/10.1139/G71-100

    Article 

    Google Scholar
     

  • 11.

    Buzzell RI, Voldeng HD (1980) Research notes: inheritance of insensitivity to long daylength. Soybean Genet Newsl 7:26–28


    Google Scholar
     

  • 12.

    Cober ER, Voldeng HD (2001) A new soybean maturity and photoperiod-sensitivity locus linked to E1 and T. Crop Sci 41:698–701. https://doi.org/10.2135/Cropsci2001.413698x

    Article 

    Google Scholar
     

  • 13.

    Cober ER, Molnar SJ, Charette M, Voldeng HD (2010) A new locus for early maturity in soybean. Crop Sci 50:524–527. https://doi.org/10.2135/Cropsci2009.04.0174

    Article 

    Google Scholar
     

  • 14.

    McBlain BA, Bernard RL, Cremeens CR, Korczak JF (1987) A procedure to identify genes affecting maturity using soybean isoline testers1. Crop Sci 27:1127–1132. https://doi.org/10.2135/Cropsci1987.0011183X002700060008x

    Article 

    Google Scholar
     

  • 15.

    Xia Z, Watanabe S, Yamada T, Tsubokura Y, Nakashima H, Zhai H, Anai T et al (2012) Positional cloning and characterization reveal the molecular basis for soybean maturity locus E1 that regulates photoperiodic flowering. Proc Natl Acad Sci 109:E2155–E2164. https://doi.org/10.1073/Pnas.1117982109

    Article 

    Google Scholar
     

  • 16.

    Franklin KA, Quail PH (2010) Phytochrome functions in Arabidopsis development. J Exp Bot 61:11–24. https://doi.org/10.1093/Jxb/Erp304

    Article 

    Google Scholar
     

  • 17.

    Liu B, Kanazawa A, Matsumura H, Takahashi R, Harada K, Abe J (2008) Genetic redundancy in soybean photoresponses associated with duplication of the phytochrome a gene. Genetics 180:995–1007. https://doi.org/10.1534/Genetics.108.092742

    Article 

    Google Scholar
     

  • 18.

    Cober ER, Tanner JW, Voldeng HD (1996) Soybean photoperiod-sensitivity loci respond differentially to light quality. Crop Sci 36:606–610. https://doi.org/10.2135/Cropsci1996.0011183X003600030014x

    Article 

    Google Scholar
     

  • 19.

    Kwak M, Velasco D, Gepts P (2008) Mapping homologous sequences for determinacy and photoperiod sensitivity in common bean (Phaseolus Vulgaris). J Hered 99:283–291. https://doi.org/10.1093/Jhered/Esn005

    Article 

    Google Scholar
     

  • 20.

    Kong F, Liu B, Xia Z, Sato S, Kim BM, Watanabe S, Yamada T et al (2010) Two coordinately regulated homologs of Flowering Locus T are involved in the control of photoperiodic flowering in soybean. Plant Physiol 154:1220–1231. https://doi.org/10.1104/Pp.110.160796

    Article 

    Google Scholar
     

  • 21.

    Maass BL, Knox MR, Venkatesha SC, Angessa TT, Ramme S, Pengelly BC (2010) Lablab purpureus—a crop lost for Africa? Trop Plant Biol 3:123–135. https://doi.org/10.1007/S12042-010-9046-1

    Article 

    Google Scholar
     

  • 22.

    Dhaliwal SK, Talukdar A, Gautam A, Sharma P, Sharma V, Kaushik P (2020) Developments and prospects in imperative underexploited vegetable legumes breeding: a review. Int J Mol Sci 21:9615. https://doi.org/10.3390/Ijms21249615

    Article 

    Google Scholar
     

  • 23.

    Modha K, Kale B, Borwal D, Ramtekey V, Arpit B (2019) Inheritance pattern of photoperiod responsive flowering, growth habit and flower colour in indian bean [Lablab Purpureus (L.) Sweet.]. Electron J Plant Breed 10:297. https://doi.org/10.5958/0975-928X.2019.00037.1

    Article 

    Google Scholar
     

  • 24.

    Ramtekey V, Bhuriya A, Ayer D, Parekh V, Modha K, Kale B, Vadodariya G et al (2019) Molecular tagging of photoperiod responsive flowering in indian bean [Lablab Purpureus (L.) Sweet]. Indian J Genet Plant Breed 79:264–269. https://doi.org/10.31742/IJGPB.79S.1.17

    Article 

    Google Scholar
     

  • 25.

    Kaldate S, Patel A, Modha K, Parekh V, Kale B, Vadodariya G, Patel R (2021) Allelic characterization and protein structure analysis reveals the involvement of splice site mutation for growth habit differences in Lablab purpureus (L.) sweet. J Genet Eng Biotechnol 19:34. https://doi.org/10.1186/S43141-021-00136-Z

    Article 

    Google Scholar
     

  • 26.

    Weller JL, Vander Schoor JK, Perez-Wright EC, Hecht V, González AM, Capel C, Yuste-Lisbona FJ et al (2019) Parallel origins of photoperiod adaptation following dual domestications of common bean. J Exp Bot 70:1209–1219. https://doi.org/10.1093/Jxb/Ery455

    Article 

    Google Scholar
     

  • 27.

    Doyle JJ, Doyle JLA (1987) Rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15


    Google Scholar
     

  • 28.

    Hall TA (1999) A user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98


    Google Scholar
     

  • 29.

    Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402. https://doi.org/10.1093/nar/25.17.3389

    Article 

    Google Scholar
     

  • 30.

    Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/Molbev/Msy096

    Article 

    Google Scholar
     

  • 31.

    Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Higgins DG et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23(21):2947–2948. https://doi.org/10.1093/bioinformatics/btm404

    Article 

    Google Scholar
     

  • 32.

    Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526. https://doi.org/10.1093/oxfordjournals.molbev.a040023

    Article 

    Google Scholar
     

  • 33.

    Felsenstein (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39(4):783–791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x

    Article 

    Google Scholar
     

  • 34.

    Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37:W202–W208. https://doi.org/10.1093/nar/gkp335

    Article 

    Google Scholar
     

  • 35.

    Aman Beshir J, Kebede M (2021) In silico analysis of promoter regions and regulatory elements (motifs and CpG islands) of the genes encoding for alcohol production in Saccharomyces cerevisiaea S288C and Schizosaccharomyces pombe 972h. J Genet Eng Biotechnol 19:8. https://doi.org/10.1186/s43141-020-00097-9

    Article 

    Google Scholar
     

  • 36.

    Lomsadze A, Ter-Hovhannisyan V, Chernoff YO, Borodovsky M (2005) Gene Identification in novel eukaryotic genomes by self-training algorithm. Nucleic Acids Res 33:6494–6506. https://doi.org/10.1093/Nar/Gki937

    Article 

    Google Scholar
     

  • 37.

    Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8:275–282. https://doi.org/10.1093/bioinformatics/8.3.275

    Article 

    Google Scholar
     

  • 38.

    Letunic I, Doerks T, Bork P (2009) SMART 6: recent updates and new developments. Nucleic Acids Res 37:D229–D232. https://doi.org/10.1093/nar/gkn808

    Article 

    Google Scholar
     

  • 39.

    Harada K, Watanabe S, Xia Z, Tsubokura Y, Yamanaka N, Anai T, Krezhova D (2011) Positional cloning of the responsible genes for maturity loci E1, E2 and E3 in Soybean. In: Soybean―Genetics Nov. Tech. Yield Enhanc


    Google Scholar
     

  • 40.

    Dhanasekar P, Reddy KS (2015) A novel mutation in TFL1 homolog affecting determinacy in cowpea (Vigna unguiculata). Mol Genet Genomics 290:55–65. https://doi.org/10.1007/S00438-014-0899-0

    Article 

    Google Scholar
     

  • 41.

    Kim SE, Okubo H (1995) Control of growth habit in determinate lablab bean (Lablab purpureus) by temperature and photoperiod. Sci Hortic 61(3-4):147–155

    Article 

    Google Scholar
     

  • 42.

    Tsubokura Y, Matsumura H, Xu M, Liu B, Nakashima H, Anai T, Kong F et al (2013) Genetic variation in soybean at the maturity locus E4 is involved in adaptation to long days at high latitudes. Agronomy 3:117–134. https://doi.org/10.3390/Agronomy3010117

    Article 

    Google Scholar
     

  • 43.

    Weller JL, Batge SL, Smith JJ, Kerckhoffs LHJ, Sineshchekov VA, Murfet IC, Reid JB (2004) A dominant mutation in the pea PHYA gene confers enhanced responses to light and impairs the light-dependent degradation of Phytochrome A. Plant Physiol 135:2186–2195. https://doi.org/10.1104/Pp.103.036103

    Article 

    Google Scholar
     

  • 44.

    Zhang Y, Sun J, Xia H, Zhao C, Hou L, Wang B, Li A et al (2018) Characterization of peanut phytochromes and their possible regulating roles in early peanut pod development. PLoS One 13:5. https://doi.org/10.1371/Journal.Pone.0198041

    Article 

    Google Scholar
     

  • 45.

    Hwang WJ, Ha J, Lee T, Jeong H, Kim MY, Kim SK, Lee Y-H et al (2017) A candidate flowering gene in mungbean is homologous to a soybean phytochrome a gene. Euphytica 213:79. https://doi.org/10.1007/S10681-017-1866-8

    Article 

    Google Scholar
     

  • 46.

    Paterson AH, Lin Y-R, Li Z, Schertz KF, Doebley JF, Pinson SRM, Liu S-C et al (1995) Convergent domestication of cereal crops by independent mutations at corresponding genetic loci. Science 269:1714–1718. https://doi.org/10.1126/Science.269.5231.1714

    Article 

    Google Scholar
     

  • 47.

    Opperdoes (2003) Phylogenetic analysis using protein sequences. In: Phylogenetics Handb. A Pract. Approach to DNA Protein Phylogeny


    Google Scholar
     

  • 48.

    McClean PE, Mamidi S, McConnell M, Chikara S, Lee R (2010) Synteny mapping between common bean and soybean reveals extensive blocks of shared loci. BMC Genomics 11:184. https://doi.org/10.1186/1471-2164-11-184

    Article 

    Google Scholar
     

  • 49.

    Chang Y, Liu H, Liu M, Liao X, Sahu SK, Fu Y, Song B et al (2019) The draft genomes of five agriculturally important African orphan crops. Gigascience 8:3. https://doi.org/10.1093/Gigascience/Giy152

    Article 

    Google Scholar
     

  • 50.

    Wang Z, Yang R, Devisetty UK, Maloof JN, Zuo Y, Li J, Shen Y et al (2017) The divergence of flowering time modulated by FT/TFL1 is independent to their interaction and binding activities. Front Plant Sci 8:697. https://doi.org/10.3389/Fpls.2017.00697

    Article 

    Google Scholar
     

  • 51.

    Pham VN, Kathare PK, Huq E (2017) Phytochromes and phytochrome interacting factors. Plant Physiol 176:1025–1038. https://doi.org/10.1104/pp.17.01384

    Article 

    Google Scholar
     

  • 52.

    Hanano S, Stracke R, Jakoby M, Merkle T, Domagalska MA, Weisshaar B, Davis SJ (2008) A systematic survey in Arabidopsis thaliana of transcription factors that modulate circadian parameters. BMC Genomics 9:182. https://doi.org/10.1186/1471-2164-9-182

    Article 

    Google Scholar
     

  • 53.

    Nakamichi N (2011) Molecular mechanisms underlying the Arabidopsis circadian clock. Plant Cell Physiol 52(10):1709–1718. https://doi.org/10.1093/pcp/pcr118

    Article 

    Google Scholar
     

  • 54.

    Oide M, Nakasako M (2021) Red light-induced structure changes in phytochrome A from Pisum sativum. Sci Rep 11:2827. https://doi.org/10.1038/S41598-021-82544-2

    Article 

    Google Scholar
     

  • 55.

    Rockwell NC, Su Y-S, Lagarias JC (2006) Phytochrome structure and signaling mechanisms. Annu Rev Plant Biol 57:837–858. https://doi.org/10.1146/Annurev.Arplant.56.032604.144208

    Article 

    Google Scholar
     

  • 56.

    Cheng M-C, Kathare PK, Paik I, Huq E (2021) Phytochrome signaling networks. Annu Rev Plant Biol 72:217–244. https://doi.org/10.1146/Annurev-Arplant-080620-024221

    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.springeropen.com/)