• 1.

    B.J. Pieters et al., Natural supramolecular protein assemblies. Chem. Soc. Rev 45(1), 24–39 (2016)

    CAS 

    Google Scholar
     

  • 2.

    H. Garcia-Seisdedos et al., Proteins evolve on the edge of supramolecular self-assembly. Nature 548(7666), 244–247 (2017)

    CAS 

    Google Scholar
     

  • 3.

    J.A. Marsh, S.A. Teichmann, Structure, Dynamics, Assembly, and Evolution of Protein Complexes. Annu. Rev. Biochem. 84(84), 551–575 (2015)

    CAS 

    Google Scholar
     

  • 4.

    I.V. Korendovych, W.F. DeGrado, De novo protein design, a retrospective. Q. Rev. Biophys. 53, e3 (2020)

    CAS 

    Google Scholar
     

  • 5.

    W.F. DeGrado, L. Regan, S.P. Ho, The design of a four-helix bundle protein. Cold Spring Harb. Symp. Quant. Biol 52, 521–526 (1987)

    CAS 

    Google Scholar
     

  • 6.

    L. Regan, W.F. DeGrado, Characterization of a helical protein designed from first principles. Science 241(4868), 976–978 (1988)

    CAS 

    Google Scholar
     

  • 7.

    G. Grigoryan, W.F. Degrado, Probing designability via a generalized model of helical bundle geometry. J. Mol. Biol. 405(4), 1079–1100 (2011)

    CAS 

    Google Scholar
     

  • 8.

    C.W. Wood, D.N. Woolfson, CCBuilder 2.0: Powerful and accessible coiled-coil modeling. Protein Sci. 27(1), 103–111 (2018)

    CAS 

    Google Scholar
     

  • 9.

    R.D. Fraser, T.P. Macrae, A. Miller, The Fourier Transform of the coiled-coil model for alpha-keratin. A correction. Acta. Crystallogr. 18, 1087 (1965)

    CAS 

    Google Scholar
     

  • 10.

    K.W. Plaxco, K.T. Simons, D. Baker, Contact order, transition state placement and the refolding rates of single domain proteins. J Mol Biol 277(4), 985–994 (1998)

    CAS 

    Google Scholar
     

  • 11.

    E. Marcos et al., De novo design of a non-local beta-sheet protein with high stability and accuracy. Nat. Struct. Mol. Biol. 25(11), 1028–1034 (2018)

    CAS 

    Google Scholar
     

  • 12.

    M.H. Hecht, De novo design of beta-sheet proteins. Proc. Natl. Acad. Sci. USA 91(19), 8729–8730 (1994)

    CAS 

    Google Scholar
     

  • 13.

    S. Jones, J.M. Thornton, Principles of protein–protein interactions. Proc. Natl. Acad. Sci. USA 93(1), 13–20 (1996)

    CAS 

    Google Scholar
     

  • 14.

    B. Lee, F.M. Richards, The interpretation of protein structures: estimation of static accessibility. J. Mol. Biol. 55(3), 379–400 (1971)

    CAS 

    Google Scholar
     

  • 15.

    M. Gerstein, J. Tsai, M. Levitt, The volume of atoms on the protein surface: calculated from simulation, using Voronoi polyhedra. J. Mol. Biol. 249(5), 955–966 (1995)

    CAS 

    Google Scholar
     

  • 16.

    T.N. Bhat et al., Bound water molecules and conformational stabilization help mediate an antigen-antibody association. Proc Natl Acad Sci U S A 91(3), 1089–1093 (1994)

    CAS 

    Google Scholar
     

  • 17.

    F.M. Richards, The interpretation of protein structures: total volume, group volume distributions and packing density. J. Mol. Biol. 82(1), 1–14 (1974)

    CAS 

    Google Scholar
     

  • 18.

    Y. Harpaz, M. Gerstein, C. Chothia, Volume changes on protein folding. Structure 2(7), 641–649 (1994)

    CAS 

    Google Scholar
     

  • 19.

    M.J. Castro, S. Anderson, Alanine point-mutations in the reactive region of bovine pancreatic trypsin inhibitor: effects on the kinetics and thermodynamics of binding to beta-trypsin and alpha-chymotrypsin. Biochemistry 35(35), 11435–11446 (1996)

    CAS 

    Google Scholar
     

  • 20.

    T. Clackson, J.A. Wells, A hot spot of binding energy in a hormone-receptor interface. Science 267(5196), 383–386 (1995)

    CAS 

    Google Scholar
     

  • 21.

    J. de Wit et al., Role of leucine-rich repeat proteins in the development and function of neural circuits. Annu. Rev. Cell. Dev. Biol. 27, 697–729 (2011)


    Google Scholar
     

  • 22.

    G.L. Blatch, M. Lassle, The tetratricopeptide repeat: a structural motif mediating protein-protein interactions. BioEssays 21(11), 932–939 (1999)

    CAS 

    Google Scholar
     

  • 23.

    P.V. Lishko et al., The ankyrin repeats of TRPV1 bind multiple ligands and modulate channel sensitivity. Neuron 54(6), 905–918 (2007)

    CAS 

    Google Scholar
     

  • 24.

    R. Latorre, C. Zaelzer, S. Brauchi, Structure-functional intimacies of transient receptor potential channels. Q. Rev. Biophys. 42(3), 201–246 (2009)

    CAS 

    Google Scholar
     

  • 25.

    C. Choma et al., Asparagine-mediated self-association of a model transmembrane helix. Nat. Struct. Biol. 7(2), 161–166 (2000)

    CAS 

    Google Scholar
     

  • 26.

    P.B. Harbury et al., A switch between 2-stranded, 3-stranded and 4-stranded coiled coils in gcn4 leucine-zipper mutants. Science 262(5138), 1401–1407 (1993)

    CAS 

    Google Scholar
     

  • 27.

    R. Riek, D.S. Eisenberg, The activities of amyloids from a structural perspective. Nature 539(7628), 227–235 (2016)


    Google Scholar
     

  • 28.

    A.W. Fitzpatrick et al., Atomic structure and hierarchical assembly of a cross-beta amyloid fibril. Proc. Natl. Acad. Sci. USA 110(14), 5468–5473 (2013)

    CAS 

    Google Scholar
     

  • 29.

    Y. Xiao et al., Abeta(1–42) fibril structure illuminates self-recognition and replication of amyloid in Alzheimer’s disease. Nat. Struct. Mol. Biol. 22(6), 499–505 (2015)

    CAS 

    Google Scholar
     

  • 30.

    A. Aggeli et al., Responsive gels formed by the spontaneous self-assembly of peptides into polymeric beta-sheet tapes. Nature 386(6622), 259–262 (1997)

    CAS 

    Google Scholar
     

  • 31.

    J.P. Schneider et al., Responsive hydrogels from the intramolecular folding and self-assembly of a designed peptide. J. Am. Chem. Soc. 124(50), 15030–15037 (2002)

    CAS 

    Google Scholar
     

  • 32.

    A.A. Vorobieva et al., De novo design of transmembrane beta barrels. Science 371(6531), eabc8182 (2021)


    Google Scholar
     

  • 33.

    H. Sun et al., Hierarchical self-assembly of proteins through rationally designed supramolecular interfaces. Front. Bioeng. Biotechnol. 8, 295 (2020)


    Google Scholar
     

  • 34.

    W.J. Song, F.A. Tezcan., A designed supramolecular protein assembly with in vivo enzymatic activity. Science 346(6216), 1525–1528 (2014). https://doi.org/10.1126/science.1259680

    CAS 
    Article 

    Google Scholar
     

  • 35.

    E.N. Salgado et al., Metal templated design of protein interfaces. Proc. Natl. Acad. Sci. USA 107(5), 1827–1832 (2010)

    CAS 

    Google Scholar
     

  • 36.

    S.J. Lee, S.L. Michel, Structural metal sites in nonclassical zinc finger proteins involved in transcriptional and translational regulation. Acc. Chem. Res 47(8), 2643–2650 (2014)

    CAS 

    Google Scholar
     

  • 37.

    J. Miller, A.D. McLachlan, A. Klug, Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J 4(6), 1609–1614 (1985)

    CAS 

    Google Scholar
     

  • 38.

    J. Laniado, T.O. Yeates, A complete rule set for designing symmetry combination materials from protein molecules. Proc. Natl. Acad. Sci. USA 117(50), 31817–31823 (2020)

    CAS 

    Google Scholar
     

  • 39.

    M.D. Shoulders, R.T. Raines, Collagen structure and stability. Annu. Rev. Biochem. 78, 929–958 (2009)

    CAS 

    Google Scholar
     

  • 40.

    B. Brodsky, J.A. Ramshaw, The collagen triple-helix structure. Matrix Biol 15(8–9), 545–554 (1997)

    CAS 

    Google Scholar
     

  • 41.

    B. An, Y.S. Lin, B. Brodsky, Collagen interactions: drug design and delivery. Adv. Drug. Deliv. Rev. 97, 69–84 (2016)

    CAS 

    Google Scholar
     

  • 42.

    G.N. Ramachandran, G. Kartha, Structure of collagen. Nature 174(4423), 269–270 (1954)

    CAS 

    Google Scholar
     

  • 43.

    K. Okuyama et al., Crystal structure of (Gly-Pro-Hyp)(9): implications for the collagen molecular model. Biopolymers 97(8), 607–616 (2012)

    CAS 

    Google Scholar
     

  • 44.

    D.S. Eisenberg, M.R. Sawaya, Structural studies of amyloid proteins at the molecular level. Annu. Rev. Biochem. 86, 69–95 (2017)

    CAS 

    Google Scholar
     

  • 45.

    B.H. Toyama, J.S. Weissman, Amyloid structure: conformational diversity and consequences. Annu. Rev. Biochem 80, 557–585 (2011)

    CAS 

    Google Scholar
     

  • 46.

    L. Gremer et al., Fibril structure of amyloid-beta(1–42) by cryo-electron microscopy. Science 358(6359), 116–119 (2017)

    CAS 

    Google Scholar
     

  • 47.

    R. Guerrero-Ferreira et al., Cryo-EM structure of alpha-synuclein fibrils. Elife 7, e36402 (2018)


    Google Scholar
     

  • 48.

    A.W.P. Fitzpatrick et al., Cryo-EM structures of tau filaments from Alzheimer’s disease. Nature 547(7662), 185–190 (2017)

    CAS 

    Google Scholar
     

  • 49.

    R. Dominguez, K.C. Holmes, Actin structure and function. Annu. Rev. Biophys. 40, 169–186 (2011)

    CAS 

    Google Scholar
     

  • 50.

    K.C. Holmes et al., Atomic model of the actin filament. Nature 347(6288), 44–49 (1990)

    CAS 

    Google Scholar
     

  • 51.

    J. von der Ecken et al., Structure of the F-actin-tropomyosin complex. Nature 519(7541), 114–117 (2015)


    Google Scholar
     

  • 52.

    P.S. Gural et al., Cryo-EM structures reveal specialization at the myosin VI-actin interface and a mechanism of force sensitivity. Elife 6, e31125 (2017)


    Google Scholar
     

  • 53.

    S. Kaltofen et al., Computational de novo design of a self-assembling peptide with predefined structure. J. Mol. Biol 427(2), 550–562 (2015)

    CAS 

    Google Scholar
     

  • 54.

    Yokoi, H., Kinoshita, T. Strategy for designing self-assembling peptides to prepare transparent nanofiber hydrogel at neutral pH. J. Nanomater. 2012. 2012.

  • 55.

    S.A. Potekhin et al., De novo design of fibrils made of short alpha-helical coiled coil peptides. Chem. Biol. 8(11), 1025–1032 (2001)

    CAS 

    Google Scholar
     

  • 56.

    D.E. Wagner et al., Toward the development of peptide nanofilaments and nanoropes as smart materials. Proc. Natl. Acad. Sci. U.S.A. 102(36), 12656–12661 (2005)

    CAS 

    Google Scholar
     

  • 57.

    T.H. Sharp et al., Cryo-transmission electron microscopy structure of a gigadalton peptide fiber of de novo design. Proc. Natl. Acad. Sci. U.S.A. 109(33), 13266–13271 (2012)


    Google Scholar
     

  • 58.

    R.V. Rughani et al., Folding, self-assembly, and bulk material properties of a de novo designed three-stranded beta-sheet hydrogel. Biomacromol 10(5), 1295–1304 (2009)

    CAS 

    Google Scholar
     

  • 59.

    C. Wang et al., One-dimensional self-assembly of a rational designed beta-structure peptide. Biopolymers 86(1), 23–31 (2007)

    CAS 

    Google Scholar
     

  • 60.

    A. Rani et al., Nanoribbon self-assembly and hydrogel formation from an NOctanoyl octapeptide derived from the antiparallel beta-Interface of a protein homotetramer. Acta Biomater 114, 233–243 (2020)

    CAS 

    Google Scholar
     

  • 61.

    C.M. Rufo et al., Short peptides self-assemble to produce catalytic amyloids. Nat. Chem. 6(4), 303–309 (2014)

    CAS 

    Google Scholar
     

  • 62.

    N. Haspel et al., De novo tubular nanostructure design based on self-assembly of beta-helical protein motifs. Structure 14(7), 1137–1148 (2006)

    CAS 

    Google Scholar
     

  • 63.

    K. Nagy-Smith et al., Molecular structure of monomorphic peptide fibrils within a kinetically trapped hydrogel network. Proc. Natl. Acad. Sci. U.S.A. 112(32), 9816–9821 (2015)

    CAS 

    Google Scholar
     

  • 64.

    A.R. Cormier et al., Molecular structure of RADA16-I designer self-assembling peptide nanofibers. ACS Nano 7(9), 7562–7572 (2013)

    CAS 

    Google Scholar
     

  • 65.

    R.P. Fagan, N.F. Fairweather, Biogenesis and functions of bacterial S-layers. Nat. Rev. Microbiol. 12(3), 211–222 (2014)

    CAS 

    Google Scholar
     

  • 66.

    L. Gambelli et al., Architecture and modular assembly of Sulfolobus S-layers revealed by electron cryotomography. Proc. Natl. Acad. Sci. USA. 116(50), 25278–25286 (2019)

    CAS 

    Google Scholar
     

  • 67.

    M.A. Arbing et al., Structure of the surface layer of the methanogenic archaean Methanosarcina acetivorans. Proc. Natl. Acad. Sci. U.S.A. 109(29), 11812–11817 (2012)

    CAS 

    Google Scholar
     

  • 68.

    E. Baranova et al., SbsB structure and lattice reconstruction unveil Ca2+ triggered S-layer assembly. Nature 487(7405), 119 (2012)

    CAS 

    Google Scholar
     

  • 69.

    T.A.M. Bharat et al., Structure of the hexagonal surface layer on Caulobacter crescentus cells. Nat. Microbiol. 2(7), 17059 (2017)

    CAS 

    Google Scholar
     

  • 70.

    U.B. Sleytr et al., S-layers: principles and applications. FEMS Microbiol. Rev. 38(5), 823–864 (2014)

    CAS 

    Google Scholar
     

  • 71.

    G.D. Bowman, M. O’Donnell, J. Kuriyan, Structural analysis of a eukaryotic sliding DNA clamp-clamp loader complex. Nature 429(6993), 724–730 (2004)

    CAS 

    Google Scholar
     

  • 72.

    X.P. Kong et al., Three-dimensional structure of the beta subunit of E. coli DNA polymerase III holoenzyme: a sliding DNA clamp. Cell 69(3), 425–37 (1992)

    CAS 

    Google Scholar
     

  • 73.

    J.M. Gulbis et al., Structure of the C-terminal region of p21(WAF1/CIP1) complexed with human PCNA. Cell 87(2), 297–306 (1996)

    CAS 

    Google Scholar
     

  • 74.

    M.A. Trakselis, Structural mechanisms of hexameric helicase loading, assembly, and unwinding. F1000 Res 5, F1000 (2016)


    Google Scholar
     

  • 75.

    S. Bailey, W.K. Eliason, T.A. Steitz, Structure of hexameric DnaB helicase and its complex with a domain of DnaG primase. Science 318(5849), 459–463 (2007)

    CAS 

    Google Scholar
     

  • 76.

    M.R. Singleton et al., Crystal structure of T7 gene 4 ring helicase indicates a mechanism for sequential hydrolysis of nucleotides. Cell 101(6), 589–600 (2000)

    CAS 

    Google Scholar
     

  • 77.

    M.R. Singleton, M.S. Dillingham, D.B. Wigley, Structure and mechanism of helicases and nucleic acid translocases. Annu. Rev. Biochem. 76, 23–50 (2007)

    CAS 

    Google Scholar
     

  • 78.

    R. Kovall, B.W. Matthews, Toroidal structure of lambda-exonuclease. Science 277(5333), 1824–1827 (1997)

    CAS 

    Google Scholar
     

  • 79.

    J. Zhang et al., Crystal structure of E. coli RecE protein reveals a toroidal tetramer for processing double-stranded DNA breaks. Structure 17(5), 690–702 (2009)


    Google Scholar
     

  • 80.

    S. Lemak et al., Toroidal structure and DNA cleavage by the CRISPR-associated [4Fe-4S] cluster containing Cas4 nuclease SSO0001 from Sulfolobus solfataricus. J. Am. Chem. Soc. 135(46), 17476–17487 (2013)

    CAS 

    Google Scholar
     

  • 81.

    L.K. Tamm, H. Hong, B.Y. Liang, Folding and assembly of beta-barrel membrane proteins. BBA-Biomembranes 1666(1–2), 250–263 (2004)

    CAS 

    Google Scholar
     

  • 82.

    L.Z. Song et al., Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore. Science 274(5294), 1859–1866 (1996)

    CAS 

    Google Scholar
     

  • 83.

    J.S. Jiang et al., Atomic structure of anthrax protective antigen pore elucidates toxin translocation. Nature 521(7553), 545-U323 (2015)

    CAS 

    Google Scholar
     

  • 84.

    S.W. Cowan et al., Crystal-structures explain functional-properties of 2 Escherichia coli porins. nature 358(6389), 727–733 (1992)

    CAS 

    Google Scholar
     

  • 85.

    K. Lundquist et al., The assembly of beta-barrel membrane proteins by BAM and SAM. Mol. Microbiol. 115(3), 425–435 (2021)

    CAS 

    Google Scholar
     

  • 86.

    R.Y. Tsien, The green fluorescent protein. Annu. Rev. Biochem. 67, 509–544 (1998)

    CAS 

    Google Scholar
     

  • 87.

    F. Yang, L.G. Moss, G.N. Phillips, The molecular structure of green fluorescent protein. Nat. Biotechnol. 14(10), 1246–1251 (1996)

    CAS 

    Google Scholar
     

  • 88.

    M. Ormo et al., Crystal structure of the Aequorea victoria green fluorescent protein. Science 273(5280), 1392–1395 (1996)

    CAS 

    Google Scholar
     

  • 89.

    F. Baneyx, J.F. Matthaei, Self-assembled two-dimensional protein arrays in bionanotechnology: from S-layers to designed lattices. Curr. Opin. Biotechnol. 28, 39–45 (2014)

    CAS 

    Google Scholar
     

  • 90.

    Z.B. Chen et al., Self-assembling 2D arrays with de novo protein building blocks. J. Am. Chem. Soc. 141(22), 8891–8895 (2019)

    CAS 

    Google Scholar
     

  • 91.

    J.D. Brodin et al., Metal-directed, chemically tunable assembly of one-, two- and three-dimensional crystalline protein arrays. Nat. Chem. 4(5), 375–382 (2012)

    CAS 

    Google Scholar
     

  • 92.

    Y. Suzuki et al., Self-assembly of coherently dynamic, auxetic, two-dimensional protein crystals. Nature 533(7603), 369 (2016)

    CAS 

    Google Scholar
     

  • 93.

    S. Gonen et al., Design of ordered two-dimensional arrays mediated by noncovalent protein-protein interfaces. Science 348(6241), 1365–1368 (2015)

    CAS 

    Google Scholar
     

  • 94.

    A.R. Thomson et al., Computational design of water-soluble alpha-helical barrels. Science 346(6208), 485–488 (2014)

    CAS 

    Google Scholar
     

  • 95.

    C. Xu et al., Computational design of transmembrane pores. Nature 585(7823), 129–134 (2020)

    CAS 

    Google Scholar
     

  • 96.

    I.V. Korendovych et al., De novo design and molecular assembly of a transmembrane diporphyrin-binding protein complex. J. Am. Chem. Soc. 132(44), 15516–15518 (2010)

    CAS 

    Google Scholar
     

  • 97.

    K.R. Mahendran et al., A monodisperse transmembrane alpha-helical peptide barrel. Nat. Chem. 9(5), 411–419 (2017)

    CAS 

    Google Scholar
     

  • 98.

    N.R. Zaccai et al., A de novo peptide hexamer with a mutable channel. Nat. Chem. Biol 7(12), 935–941 (2011)

    CAS 

    Google Scholar
     

  • 99.

    M. Yamagami, T. Sawada, M. Fujita, Synthetic beta-barrel by metal-induced folding and assembly. J. Am. Chem. Soc. 140(28), 8644–8647 (2018)

    CAS 

    Google Scholar
     

  • 100.

    I.S. Park et al., Designer nanorings with functional cavities from self-assembling beta-sheet peptides. Chem. Asian J. 6(2), 452–458 (2011)

    CAS 

    Google Scholar
     

  • 101.

    G. Bhardwaj et al., Accurate de novo design of hyperstable constrained peptides. Nature 538(7625), 329–335 (2016)

    CAS 

    Google Scholar
     

  • 102.

    E.G. Baker et al., Miniprotein design: past, present, and prospects. Acc. Chem. Res. 50(9), 2085–2092 (2017)

    CAS 

    Google Scholar
     

  • 103.

    Y.B. Lim, K.S. Moon, M. Lee, Stabilization of an alpha helix by beta-sheet-mediated self-assembly of a macrocyclic peptide. Angew. Chem. Int. Ed. Engl. 48(9), 1601–1605 (2009)

    CAS 

    Google Scholar
     

  • 104.

    K. Namba, G. Stubbs, Structure of tobacco mosaic virus at 3.6 A resolution: implications for assembly. Science 231(4744), 1401–6 (1986)

    CAS 

    Google Scholar
     

  • 105.

    G.P. Lomonossoff, C. Wege, TMV particles: the journey from fundamental studies to bionanotechnology applications. Adv. Virus Res. 102, 149–176 (2018)

    CAS 

    Google Scholar
     

  • 106.

    H. Wang, J.N. Culver, G. Stubbs, Structure of ribgrass mosaic virus at 2.9 A resolution: evolution and taxonomy of tobamoviruses. J. Mol. Biol. 269(5), 769–79 (1997)

    CAS 

    Google Scholar
     

  • 107.

    D.K. Clare et al., Novel inter-subunit contacts in barley stripe mosaic virus revealed by cryo-electron microscopy. Structure 23(10), 1815–1826 (2015)

    CAS 

    Google Scholar
     

  • 108.

    H.V. Goodson, E.M. Jonasson, Microtubules and microtubule-associated proteins. Cold Spring Harb. Perspect. Biol. 10(6), a022608 (2018)


    Google Scholar
     

  • 109.

    E. Mandelkow, E.M. Mandelkow, Microtubules and microtubule-associated proteins. Curr. Opin. Cell. Biol. 7(1), 72–81 (1995)

    CAS 

    Google Scholar
     

  • 110.

    R.F. Garmann et al., Physical principles in the self-assembly of a simple spherical virus. Acc. Chem. Res. 49(1), 48–55 (2016)

    CAS 

    Google Scholar
     

  • 111.

    J.A. Speir et al., Structures of the native and swollen forms of cowpea chlorotic mottle virus determined by X-ray crystallography and cryo-electron microscopy. Structure 3(1), 63–78 (1995)

    CAS 

    Google Scholar
     

  • 112.

    M.R. Perkett, D.T. Mirijanian, M.F. Hagan, The allosteric switching mechanism in bacteriophage MS2. J. Chem. Phys. 145(3), 035101 (2016)


    Google Scholar
     

  • 113.

    S.C. Harrison et al., Tomato bushy stunt virus at 2.9 A resolution. Nature 276(5686), 368–73 (1978)

    CAS 

    Google Scholar
     

  • 114.

    Y. Zhang, B.P. Orner, Self-assembly in the ferritin nano-cage protein superfamily. Int. J. Mol. Sci. 12(8), 5406–5421 (2011)

    CAS 

    Google Scholar
     

  • 115.

    L.E. Bevers, E.C. Theil, Maxi- and mini-ferritins: minerals and protein nanocages. Prog Mol Subcell Biol 52, 29–47 (2011)

    CAS 

    Google Scholar
     

  • 116.

    X.F. Liu, E.C. Theil, Ferritins: Dynamic management of biological iron and oxygen chemistry. Acc. Chem. Res. 38(3), 167–175 (2005)

    CAS 

    Google Scholar
     

  • 117.

    R.A. Grant et al., The crystal structure of Dps, a ferritin homolog that binds and protects DNA. Nat. Struct. Biol. 5(4), 294–303 (1998)

    CAS 

    Google Scholar
     

  • 118.

    Y. Ha et al., Crystal structure of bullfrog M ferritin at 2.8 angstrom resolution: analysis of subunit interactions and the binuclear metal center. J. Biol. Inorg. Chem. 4(3), 243–256 (1999)

    CAS 

    Google Scholar
     

  • 119.

    A. Dautant et al., Structure of a monoclinic crystal form of cytochrome b1 (bacterioferritin) from E. coli. Acta Crystallogr. Sect. D Struct. Biol. 54, 16–24 (1998)

    CAS 

    Google Scholar
     

  • 120.

    H.S. Huan et al., Structure determination of ferritin from Dendrorhynchus zhejiangensis. Biochem. Biophys. Res. Commun. 531(2), 195–202 (2020)

    CAS 

    Google Scholar
     

  • 121.

    R. Ladenstein, M. Fischer, A. Bacher, The lumazine synthase/riboflavin synthase complex: shapes and functions of a highly variable enzyme system. FEBS J. 280(11), 2537–2563 (2013)

    CAS 

    Google Scholar
     

  • 122.

    E. Morgunova et al., Crystal structure of lumazine synthase from Mycobacterium tuberculosis as a target for rational drug design: Binding mode of a new class of purinetrione inhibitors. Biochemistry 44(8), 2746–2758 (2005)

    CAS 

    Google Scholar
     

  • 123.

    A. Casanas et al., Vault particles: a new generation of delivery nanodevices. Curr. Opin. Biotechnol. 23(6), 972–977 (2012)

    CAS 

    Google Scholar
     

  • 124.

    L.B. Kong et al., Structure of the vault, a ubiquitous celular component. Structure 7(4), 371–379 (1999)

    CAS 

    Google Scholar
     

  • 125.

    G. Frascotti et al., The vault nanoparticle: a gigantic ribonucleoprotein assembly involved in diverse physiological and pathological phenomena and an ideal nanovector for drug delivery and therapy. Cancers 13(4), 707 (2021)

    CAS 

    Google Scholar
     

  • 126.

    Y. Mikyas et al., Cryoelectron microscopy imaging of recombinant and tissue derived vaults: localization of the MVP N termini and VPARP. J. Mol. Biol. 344(1), 91–105 (2004)

    CAS 

    Google Scholar
     

  • 127.

    A. Fotin et al., Molecular model for a complete clathrin lattice from electron cryomicroscopy. Nature 432(7017), 573–579 (2004)

    CAS 

    Google Scholar
     

  • 128.

    C.M. Kumar, S.C. Mande, G. Mahajan, Multiple chaperonins in bacteria–novel functions and non-canonical behaviors. Cell Stress Chaperones 20(4), 555–574 (2015)

    CAS 

    Google Scholar
     

  • 129.

    X. Fei et al., Formation and structures of GroEL:GroES2 chaperonin footballs, the protein-folding functional form. Proc. Natl. Acad. Sci. USA. 111(35), 12775–12780 (2014)

    CAS 

    Google Scholar
     

  • 130.

    A. Leitner et al., The molecular architecture of the eukaryotic chaperonin TRiC/CCT. Structure 20(5), 814–825 (2012)

    CAS 

    Google Scholar
     

  • 131.

    H. Shen et al., De novo design of self-assembling helical protein filaments. Science 362(6415), 705 (2018)

    CAS 

    Google Scholar
     

  • 132.

    S.A. Hughes et al., Ambidextrous helical nanotubes from self-assembly of designed helical hairpin motifs. Proc. Natl. Acad. Sci. U.S.A. 116(29), 14456–14464 (2019)

    CAS 

    Google Scholar
     

  • 133.

    N.C. Burgess et al., Modular design of self-assembling peptide-based nanotubes. J. Am. Chem. Soc. 137(33), 10554–10562 (2015)

    CAS 

    Google Scholar
     

  • 134.

    K.H. Chen et al., X-ray Crystallographic Structure of a Giant Double-Walled Peptide Nanotube Formed by a Macrocyclic beta-Sheet Containing A beta(16–22). J. Am. Chem. Soc. 139(24), 8102–8105 (2017)

    CAS 

    Google Scholar
     

  • 135.

    R. Divine et al., Designed proteins assemble antibodies into modular nanocages. Science 372(6537), 47 (2021)


    Google Scholar
     

  • 136.

    Y. Hsia et al., Design of multi-scale protein complexes by hierarchical building block fusion. Nat. Commun. 12(1), 2294 (2021)

    CAS 

    Google Scholar
     

  • 137.

    J.B. Bale et al., Accurate design of megadalton-scale two-component icosahedral protein complexes. Science 353(6297), 389–394 (2016)

    CAS 

    Google Scholar
     

  • 138.

    N.P. King et al., Accurate design of co-assembling multi-component protein nanomaterials. Nature 510(7503), 103 (2014)

    CAS 

    Google Scholar
     

  • 139.

    Y.T. Lai et al., Structure of a designed protein cage that self-assembles into a highly porous cube. Nat. Chem. 6(12), 1065–1071 (2014)

    CAS 

    Google Scholar
     

  • 140.

    Y. Hsia et al., Design of a hyperstable 60-subunit protein icosahedron. Nature 535(7610), 136 (2016)

    CAS 

    Google Scholar
     

  • 141.

    A.J. Wargacki et al., Complete and cooperative in vitro assembly of computationally designed self-assembling protein nanomaterials. Nat. Commun. 12(1), 883 (2021)

    CAS 

    Google Scholar
     

  • 142.

    N.P. King et al., Computational design of self-assembling protein nanomaterials with atomic level accuracy. Science 336(6085), 1171–1174 (2012)

    CAS 

    Google Scholar
     

  • 143.

    G. Marsh, Symmetry-directed self-assembly of a tetrahedral protein cage mediated by de novo-designed coiled coils. ChemBioChem 18(19), 1871–1871 (2017)


    Google Scholar
     

  • 144.

    Y. Hsia et al., Design of a hyperstable 60-subunit protein icosahedron (vol 535, pg 136, 2016). Nature 540(7631), 150 (2016)

    CAS 

    Google Scholar
     

  • 145.

    E. Ostuni et al., Using self-assembled monolayers to pattern ECM proteins and cells on substrates. Methods Mol. Biol. 522, 183–194 (2009)

    CAS 

    Google Scholar
     

  • 146.

    G.A. Hudalla, W.L. Murphy, Chemically well-defined self-assembled monolayers for cell culture: toward mimicking the natural ECM. Soft Matter 7(20), 9561–9571 (2011)

    CAS 

    Google Scholar
     

  • 147.

    J.K. Mouw, G. Ou, V.M. Weaver, Extracellular matrix assembly: a multiscale deconstruction. Nat. Rev. Mol. Cell. Biol 15(12), 771–785 (2014)

    CAS 

    Google Scholar
     

  • 148.

    K.S. Hellmund, B. Koksch, Self-assembling peptides as extracellular matrix mimics to influence stem cell’s fate. Front. Chem. 7, 172 (2019)

    CAS 

    Google Scholar
     

  • 149.

    E.C. Wu, S.G. Zhang, C.A.E. Hauser, Self-assembling peptides as cell-interactive scaffolds. Adv. Func. Mater. 22(3), 456–468 (2012)

    CAS 

    Google Scholar
     

  • 150.

    Y.L. Yang et al., Designer self-assembling peptide nanomaterials. Nano Today 4(2), 193–210 (2009)

    CAS 

    Google Scholar
     

  • 151.

    X. Liu et al., Functionalized self-assembling peptide nanofiber hydrogels mimic stem cell niche to control human adipose stem cell behavior in vitro. Acta Biomater. 9(6), 6798–6805 (2013)

    CAS 

    Google Scholar
     

  • 152.

    R.S. Jacob et al., Self healing hydrogels composed of amyloid nano fibrils for cell culture and stem cell differentiation. Biomaterials 54, 97–105 (2015)

    CAS 

    Google Scholar
     

  • 153.

    K.F. Bruggeman et al., Temporally controlled release of multiple growth factors from a self-assembling peptide hydrogel. Nanotechnology 27(38), 385102 (2016)


    Google Scholar
     

  • 154.

    A.L. Rodriguez et al., Using minimalist self-assembling peptides as hierarchical scaffolds to stabilise growth factors and promote stem cell integration in the injured brain. J. Tissue Eng. Regen. Med. 12(3), E1571–E1579 (2018)

    CAS 

    Google Scholar
     

  • 155.

    K.M. Hennessy et al., The effect of collagen I mimetic peptides on mesenchymal stem cell adhesion and differentiation, and on bone formation at hydroxyapatite surfaces. Biomaterials 30(10), 1898–1909 (2009)

    CAS 

    Google Scholar
     

  • 156.

    X.H. Zhang et al., Peptide-conjugated hyaluronic acid surface for the culture of human induced pluripotent stem cells under defined conditions. Carbohyd. Polym. 136, 1061–1064 (2016)

    CAS 

    Google Scholar
     

  • 157.

    M. Yamada et al., Ile-Lys-Val-Ala-Val (IKVAV)-containing laminin alpha 1 chain peptides form amyloid-like fibrils. FEBS Lett. 530(1–3), 48–52 (2002)

    CAS 

    Google Scholar
     

  • 158.

    F.M. Watt, W.T.S. Huck, Role of the extracellular matrix in regulating stem cell fate. Nat. Rev. Mol. Cell Biol. 14(8), 467–473 (2013)

    CAS 

    Google Scholar
     

  • 159.

    K.J. Lampe, S.C. Heilshorn, Building stem cell niches from the molecule up through engineered peptide materials. Neurosci. Lett. 519(2), 138–146 (2012)

    CAS 

    Google Scholar
     

  • 160.

    U. Johansson et al., Assembly of functionalized silk together with cells to obtain proliferative 3D cultures integrated in a network of ECM-like microfibers. Sci. Rep. 9, 6291 (2019)


    Google Scholar
     

  • 161.

    S. Zhang, Lipid-like self-assembling peptides. Acc Chem Res 45(12), 2142–2150 (2012)

    CAS 

    Google Scholar
     

  • 162.

    N. Nuraje, H.Y. Bai, K. Su, Bolaamphiphilic molecules: assembly and applications. Prog. Polym. Sci. 38(2), 302–343 (2013)

    CAS 

    Google Scholar
     

  • 163.

    N. Schmidt et al., Arginine-rich cell-penetrating peptides. FEBS Lett. 584(9), 1806–1813 (2010)

    CAS 

    Google Scholar
     

  • 164.

    E.R. da Silva et al., Self-assembled arginine-capped peptide bolaamphiphile nanosheets for cell culture and controlled wettability surfaces. Biomacromol 16(10), 3180–3190 (2015)


    Google Scholar
     

  • 165.

    S.P. Massia, S.S. Rao, J.A. Hubbell, Covalently immobilized laminin peptide Tyr-Ile-Gly-Ser-Arg (Yigsr) supports cell spreading and colocalization of the 67-kiloDalton laminin receptor with alpha-actinin and vinculin. J. Biol. Chem. 268(11), 8053–8059 (1993)

    CAS 

    Google Scholar
     

  • 166.

    K.L. Niece et al., Self-assembly combining two bioactive peptide-amphiphile molecules into nanofibers by electrostatic attraction. J. Am. Chem. Soc. 125(24), 7146–7147 (2003)

    CAS 

    Google Scholar
     

  • 167.

    R. Jain, S. Roy, Tuning the gelation behavior of short laminin derived peptides via solvent mediated self-assembly. Mater. Sci. Eng. C Mater. Biol. Appl. 108, 110483 (2020)

    CAS 

    Google Scholar
     

  • 168.

    R. Jain, S. Roy, Controlling neuronal cell growth through composite laminin supramolecular hydrogels. ACS Biomater. Sci. Eng. 6(5), 2832–2846 (2020)

    CAS 

    Google Scholar
     

  • 169.

    M. Zhou et al., Self-assembled peptide-based hydrogels as scaffolds for anchorage-dependent cells. Biomaterials 30(13), 2523–2530 (2009)

    CAS 

    Google Scholar
     

  • 170.

    C.C. Horgan et al., Characterisation of minimalist co-assembled fluorenylmethyloxycarbonyl self-assembling peptide systems for presentation of multiple bioactive peptides. Acta Biomater. 38, 11–22 (2016)

    CAS 

    Google Scholar
     

  • 171.

    S.S.S. Aye et al., Scaffolds formed via the non-equilibrium supramolecular assembly of the synergistic ecm peptides RGD and PHSRN demonstrate improved cell attachment in 3D. Polymers 10(7), 690 (2018)


    Google Scholar
     

  • 172.

    M. Gupta et al., Self-assembly of a dipeptide-containing conformationally restricted dehydrophenylalanine residue to form ordered nanotubes. Adv. Mater. 19(6), 858 (2007)

    CAS 

    Google Scholar
     

  • 173.

    J.J. Panda, V.S. Chauhan, Short peptide based self-assembled nanostructures: implications in drug delivery and tissue engineering. Polym. Chem. 5(15), 4418–4436 (2014)


    Google Scholar
     

  • 174.

    C.K. Thota, N. Yadav, V.S. Chauhan, A novel highly stable and injectable hydrogel based on a conformationally restricted ultrashort peptide. Sci. Rep. 6, 31167 (2016)

    CAS 

    Google Scholar
     

  • 175.

    N. Yadav, M.K. Chauhan, V.S. Chauhan, Short to ultrashort peptide-based hydrogels as a platform for biomedical applications. Biomater. Sci. 8(1), 84–100 (2020)

    CAS 

    Google Scholar
     

  • 176.

    N. Yadav, M.K. Chauhan, V.S. Chauhan, Conformationally constrained dipeptide-based hydrogel as a platform for 3D cell growth and tissue engineering applications. Appl. Nanosci. 11(7), 2019–2031 (2021)

    CAS 

    Google Scholar
     

  • 177.

    J.M. Perez-Aguilar, J.G. Saven, Computational design of membrane proteins. Structure 20(1), 5–14 (2012)

    CAS 

    Google Scholar
     

  • 178.

    J.D. Lear, Z.R. Wasserman, W.F. DeGrado, Synthetic amphiphilic peptide models for protein ion channels. Science 240(4856), 1177–1181 (1988)

    CAS 

    Google Scholar
     

  • 179.

    M.M. Mohammad, K.R. Howard, L. Movileanu, Redesign of a plugged beta-barrel membrane protein. J. Biol. Chem. 286(10), 8000–8013 (2011)

    CAS 

    Google Scholar
     

  • 180.

    M. Soskine et al., An engineered ClyA nanopore detects folded target proteins by selective external association and pore entry. Nano Lett. 12(9), 4895–4900 (2012)

    CAS 

    Google Scholar
     

  • 181.

    L. Franceschini et al., A nanopore machine promotes the vectorial transport of DNA across membranes. Nat. Commun. 4, 2415 (2013)


    Google Scholar
     

  • 182.

    M. Soskine et al., Tuning the size and properties of ClyA nanopores assisted by directed evolution. J. Am. Chem. Soc. 135(36), 13456–13463 (2013)

    CAS 

    Google Scholar
     

  • 183.

    N.H. Joh et al., De novo design of a transmembrane Zn(2)(+)-transporting four-helix bundle. Science 346(6216), 1520–1524 (2014)

    CAS 

    Google Scholar
     

  • 184.

    B. Nguyen, N.H. Tolia, Protein-based antigen presentation platforms for nanoparticle vaccines. NPJ Vaccines 6(1), 70 (2021)

    CAS 

    Google Scholar
     

  • 185.

    J. Lopez-Sagaseta et al., Self-assembling protein nanoparticles in the design of vaccines. Comput. Struct. Biotechnol. J. 14, 58–68 (2016)

    CAS 

    Google Scholar
     

  • 186.

    J. Min et al., Lumazine synthase protein cage nanoparticles as modular delivery platforms for targeted drug delivery. RSC Adv. 4(89), 48596–48600 (2014)

    CAS 

    Google Scholar
     

  • 187.

    B.S. Zhang et al., A platform incorporating trimeric antigens into self-assembling nanoparticles reveals SARS-CoV-2-spike nanoparticles to elicit substantially higher neutralizing responses than spike alone. Sci. Rep. 10(1), 18149 (2020)

    CAS 

    Google Scholar
     

  • 188.

    A.E. Powell et al., A single immunization with spike-functionalized ferritin vaccines elicits neutralizing antibody responses against SARS-CoV-2 in mice. bioRxiv (2020). https://doi.org/10.1101/2020.08.28.272518

    Article 

    Google Scholar
     

  • 189.

    K. Sliepen et al., Presenting native-like HIV-1 envelope trimers on ferritin nanoparticles improves their immunogenicity. Retrovirology 12, 82 (2015)


    Google Scholar
     

  • 190.

    R. Divine et al., Designed proteins assemble antibodies into modular nanocages. Science 372(6537), eabd9994 (2021)

    CAS 

    Google Scholar
     

  • 191.

    Z. Yang et al., Encapsulation of platinum anticancer drugs by apoferritin. Chem. Commun. 33, 3453–3455 (2007)


    Google Scholar
     

  • 192.

    A.H. Ma-Ham et al., Apoferritin-based nanomedicine platform for drug delivery: equilibrium binding study of daunomycin with DNA. J. Mater. Chem. 21(24), 8700–8708 (2011)

    CAS 

    Google Scholar
     

  • 193.

    M. Kanekiyo et al., Self-assembling influenza nanoparticle vaccines elicit broadly neutralizing H1N1 antibodies. Nature 499(7456), 102–106 (2013)

    CAS 

    Google Scholar
     

  • 194.

    J. Jardine et al., Rational HIV immunogen design to target specific germline B cell receptors. Science 340(6133), 711–716 (2013)

    CAS 

    Google Scholar
     

  • 195.

    M. Kanekiyo et al., Rational design of an epstein-barr virus vaccine targeting the receptor-binding site. Cell 162(5), 1090–1100 (2015)

    CAS 

    Google Scholar
     

  • 196.

    A. Antanasijevic et al., Structural and functional evaluation of de novo-designed, two-component nanoparticle carriers for HIV Env trimer immunogens. PLoS Pathog 16(8), e1008665 (2020)

    CAS 

    Google Scholar
     

  • 197.

    B. Tesarova et al., Taking advantage of cellular uptake of ferritin nanocages for targeted drug delivery. J. Control. Release 325, 176–190 (2020)

    CAS 

    Google Scholar
     

  • 198.

    B. Worsdorfer, Z. Pianowski, D. Hilvert, Efficient in vitro encapsulation of protein cargo by an engineered protein container. J. Am. Chem. Soc. 134(2), 909–911 (2012)

    CAS 

    Google Scholar
     

  • 199.

    B. Worsdorfer, K.J. Woycechowsky, D. Hilvert, Directed evolution of a protein container. Science 331(6017), 589–592 (2011)


    Google Scholar
     

  • 200.

    T. Yamada et al., Nanoparticles for the delivery of genes and drugs to human hepatocytes. Nat Biotechnol 21(8), 885–890 (2003)

    CAS 

    Google Scholar
     

  • 201.

    M. Uchida et al., Targeting of cancer cells with ferrimagnetic ferritin cage nanoparticles. J. Am. Chem. Soc. 128(51), 16626–16633 (2006)

    CAS 

    Google Scholar
     

  • 202.

    Y. Lei et al., Targeted tumor delivery and controlled release of neuronal drugs with ferritin nanoparticles to regulate pancreatic cancer progression. J. Control Release 232, 131–142 (2016)

    CAS 

    Google Scholar
     

  • 203.

    A. Antanasijevic et al., Structural and functional evaluation ofde novo-designed, two-component nanoparticle carriers for HIV Env trimer immunogens. Plos Pathogens 16(8), e1008665 (2020)

    CAS 

    Google Scholar
     

  • 204.

    G. Ueda et al., Tailored design of protein nanoparticle scaffolds for multivalent presentation of viral glycoprotein antigens. Elife 9, e57659 (2020)

    CAS 

    Google Scholar
     

  • 205.

    H.C. Sun et al., Hierarchical self-assembly of proteins through rationally designed supramolecular interfaces. Front. Bioeng. Biotechnol. 8, 295 (2020)


    Google Scholar
     

  • 206.

    C.H. Yang et al., Dual fluorescent- and isotopic-labelled self-assembling vancomycin for in vivo imaging of bacterial infections. Angew. Chem. Int. Ed. 56(9), 2356–2360 (2017)

    CAS 

    Google Scholar
     

  • 207.

    Q. Cai et al., Chemotaxis-instructed intracellular Staphylococcus aureus infection detection by a targeting and self-assembly signal-enhanced photoacoustic probe. Nano Lett. 18(10), 6229–6236 (2018)

    CAS 

    Google Scholar
     

  • 208.

    C.H. Yang et al., Combating bacterial infection by in situ self-assembly of AIEgen-peptide conjugate. Biomaterials 244, 119972 (2020)

    CAS 

    Google Scholar
     

  • 209.

    R. de la Rica et al., Peptide-nanotube biochips for label-free detection of multiple pathogens. Small 6(10), 1092–1095 (2010)


    Google Scholar
     

  • 210.

    J.H. Kim, J. Ryu, C.B. Park, selective detection of neurotoxin by photoluminescent peptide nanotubes. Small 7(6), 718–722 (2011)

    CAS 

    Google Scholar
     

  • 211.

    Z.Y. Qian et al., Improved enzyme immobilization on an ionic-complementary peptide-modified electrode for biomolecular sensing. Langmuir 26(3), 2176–2180 (2010)

    CAS 

    Google Scholar
     

  • 212.

    R.C. Bianchi et al., A nonenzymatic biosensor based on gold electrodes modified with peptide self-assemblies for detecting ammonia and urea oxidation. Langmuir 30(38), 11464–11473 (2014)

    CAS 

    Google Scholar
     

  • 213.

    J.P. Zhang, R.J. Narayan, DNA-directed self-assembly of fluorescent dye-labeled streptavidin arrays for protein detection. J. Nanosci. Nanotechnol. 8(11), 6048–6051 (2008)

    CAS 

    Google Scholar
     

  • 214.

    M. Arai et al., Protein sensing device with multi-recognition ability composed of self-organized glycopeptide bundle. Int. J. Mol. Sci. 22(1), 366 (2021)

    CAS 

    Google Scholar
     

  • 215.

    Y.X. Liu et al., Near-atomic cryo-EM imaging of a small protein displayed on a designed scaffolding system. Proc. Natl. Acad. Sci. USA. 115(13), 3362–3367 (2018)

    CAS 

    Google Scholar
     

  • 216.

    J. Ryu, C.B. Park, High-temperature self-assembly of peptides into vertically well-aligned nanowires by aniline vapor. Adv. Mater. 20(19), 3754 (2008)

    CAS 

    Google Scholar
     

  • 217.

    T. Cipriano et al., Bioinspired peptide nanostructures for organic field-effect transistors. ACS Appl. Mater. Interfaces. 6(23), 21408–21415 (2014)

    CAS 

    Google Scholar
     

  • 218.

    S. Reuveni, M. Ehrenberg, J. Paulsson, Ribosomes are optimized for autocatalytic production. Nature 547(7663), 293 (2017)

    CAS 

    Google Scholar
     

  • 219.

    C.Q. Zhang et al., Self-assembled peptide nanofibers designed as biological enzymes for catalyzing ester hydrolysis. ACS Nano 8(11), 11715–11723 (2014)

    CAS 

    Google Scholar
     

  • 220.

    A. Medina-Morales et al., In vitro and cellular self-assembly of a Zn-binding protein cryptand via templated disulfide bonds. J. Am. Chem. Soc. 135(32), 12013–12022 (2013)

    CAS 

    Google Scholar
     

  • 221.

    J.B. Bailey et al., Metal-directed design of supramolecular protein assemblies. Pept. Protein Enzyme Des. 580, 223–250 (2016)

    CAS 

    Google Scholar
     

  • 222.

    O. Zozulia, M.A. Dolan, I.V. Korendovych, Catalytic peptide assemblies. Chem. Soc. Rev. 47(10), 3621–3639 (2018)

    CAS 

    Google Scholar
     

  • 223.

    W.J. Song, F.A. Tezcan, A designed supramolecular protein assembly with in vivo enzymatic activity. Science 346(6216), 1525–1528 (2014)

    CAS 

    Google Scholar
     

  • 224.

    O.V. Makhlynets, P.M. Gosavi, I.V. Korendovych, Short self-assembling peptides are able to bind to copper and activate oxygen. Angewandte Chemie-International Edition 55(31), 9017–9020 (2016)

    CAS 

    Google Scholar
     

  • 225.

    K.R. Lee et al., Enhancement of catalytic activity of a programmed gold nanoparticle superstructure modulated by supramolecular protein assembly. Catal. Today 295, 95–101 (2017)

    CAS 

    Google Scholar
     

  • 226.

    Y.H. Ting et al., Zinc(II)-histidine induced collagen peptide assemblies: morphology modulation and hydrolytic catalysis evaluation. Biomacromol 19(7), 2629–2637 (2018)

    CAS 

    Google Scholar
     

  • 227.

    H.J. Kim et al., Biological conversion of methane to methanol through genetic reassembly of native catalytic domains. Nat. Catal. 2(4), 342–353 (2019)

    CAS 

    Google Scholar
     

  • 228.

    B. Rubinov et al., Transient fibril structures facilitating nonenzymatic self-replication. ACS Nano 6(9), 7893–7901 (2012)

    CAS 

    Google Scholar
     

  • 229.

    H. Kaur et al., Protein morphology drives the structure and catalytic activity of bio-inorganic hybrids. Int. J. Biol. Macromol 176, 106–116 (2021)

    CAS 

    Google Scholar
     

  • 230.

    Y.T. Wang et al., Bioinspired phosphatase-like mimic built from the self-assembly of de novo designed helical short peptides. ACS Catal. 11(9), 5839–5849 (2021)

    CAS 

    Google Scholar
     

  • 231.

    B.M. Soares et al., Chiral organocatalysts based on lipopeptide micelles for aldol reactions in water. Phys. Chem. Chem. Phys. 19(2), 1181–1189 (2017)

    CAS 

    Google Scholar
     

  • 232.

    D. Shan et al., Self-assembled films of hemoglobin/laponite/chitosan: application for the direct electrochemistry and catalysis to hydrogen peroxide. Biomacromol 8(10), 3041–3046 (2007)

    CAS 

    Google Scholar
     

  • 233.

    H. Yang et al., Modification of hydrophilic and hydrophobic surfaces using an ionic-complementary peptide. Plos ONE 2(12), e1325 (2007)


    Google Scholar
     

  • 234.

    C.L. Brown et al., Template-directed assembly of a de novo designed protein. J. Am. Chem. Soc. 124(24), 6846–6848 (2002)

    CAS 

    Google Scholar
     

  • 235.

    X.B. Mao et al., Sequence effects on peptide assembly characteristics observed by using scanning tunneling microscopy. J. Am. Chem. Soc. 135(6), 2181–2187 (2013)

    CAS 

    Google Scholar
     

  • 236.

    W.P. Lv et al., Interlayer water regulates the bio-nano interface of a beta-sheet protein stacking on graphene. Sci. Rep. 5, 7572 (2015)

    CAS 

    Google Scholar
     

  • 237.

    J.J. Guo et al., The adsorption mechanism and induced conformational changes of three typical proteins with different secondary structural features on graphene. RSC Adv. 4(20), 9953–9962 (2014)

    CAS 

    Google Scholar
     

  • 238.

    C.R. So et al., Controlling self-assembly of engineered peptides on graphite by rational mutation. ACS Nano 6(2), 1648–1656 (2012)

    CAS 

    Google Scholar
     

  • 239.

    D. Khatayevich et al., Controlling the surface chemistry of graphite by engineered self-assembled peptides. Langmuir 28(23), 8589–8593 (2012)

    CAS 

    Google Scholar
     

  • 240.

    G. Grigoryan et al., Computational design of virus-like protein assemblies on carbon nanotube surfaces. Science 332(6033), 1071–1076 (2011)

    CAS 

    Google Scholar
     

  • 241.

    Y.S. Ko et al., Peptide-based bimetallic nanostructures with tailored surface compositions and their oxygen electroreduction activities. CrystEngComm 18(32), 6024–6028 (2016)

    CAS 

    Google Scholar
     

  • 242.

    G. Thakur, K. Prashanthi, T. Thundat, Directed self-assembly of proteins into discrete radial patterns. Sci. Rep. 3, 1923 (2013)


    Google Scholar
     

  • 243.

    K.H. Kim et al., Protein-directed self-assembly of a fullerene crystal. Nat. Commun. 7, 11429 (2016)

    CAS 

    Google Scholar
     

  • 244.

    J.D. Hartgerink et al., Self-assembling peptide nanotubes. J. Am. Chem. Soc. 118(1), 43–50 (1996)

    CAS 

    Google Scholar
     

  • 245.

    J.Y. Rho et al., Dual self-assembly of supramolecular peptide nanotubes to provide stabilisation in water. Nat. Commun. 10, 4708 (2019)


    Google Scholar
     

  • 246.

    B. Dinesh et al., Self-assembly of diphenylalanine backbone homologues and their combination with functionalized carbon nanotubes. Nanoscale 7(38), 15873–15879 (2015)

    CAS 

    Google Scholar
     

  • 247.

    G.M. Mustata et al., Graphene symmetry amplified by designed peptide self-assembly. Biophys. J . 110(11), 2507–2516 (2016)

    CAS 

    Google Scholar
     

  • 248.

    Y.H. No et al., Nature-inspired construction of two-dimensionally self-assembled peptide on pristine graphene. J. Phys. Chem. Lett. 8(16), 3734–3739 (2017)

    CAS 

    Google Scholar
     

  • 249.

    J. Jumper et al., Highly accurate protein structure prediction with AlphaFold. Nature 596(7873), 583–589 (2021)

    CAS 

    Google Scholar
     

  • 250.

    M. Baek et al., Accurate prediction of protein structures and interactions using a three-track neural network. Science 373(6557), 871–876 (2021)

    CAS 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.springeropen.com/)