• Arteca RN (1996) Flowering. In: Plant growth substances. Springer, Boston, MA. pp 177–187 https://doi.org/10.1007/978-1-4757-2451-6_8.

  • Balakrishnan D, Surapaneni M, Mesapogu S, Neelamraju S (2019) Development and use of chromosome segment substitution lines as a genetic resource for crop improvement. Theor Appl Genet 132(1):1–25. https://doi.org/10.1007/s00122-018-3219-y

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Chen S, Yang Y, Shi W, Ji Q, He F, Zhang Z, Cheng Z, Liu X, Xu M (2008) Badh2, encoding betaine aldehyde dehydrogenase, inhibits the biosynthesis of 2-acetyl-1-pyrroline, a major component in rice fragrance. Plant Cell 20(7):1850–1861. https://doi.org/10.1105/tpc.108.058917

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Doi K, Iwata N, Yoshimura A (1997) The construction of chromosome substitution lines of African rice (Oryza glaberrima Steud.) in the background of Japonica rice (O. sativa L.). Rice Genet Newslett 14:39–41

    CAS 

    Google Scholar
     

  • Eshed Y, Zamir D (1994) A genomic library of Lycopersicon pennellii in L. esculentum: A tool for fine mapping of genes. Euphytica 79(3):175–179. https://doi.org/10.1007/BF00022516

    CAS 
    Article 

    Google Scholar
     

  • Eshed Y, Zamir D (1995) An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics 141(3):1147–1162. https://doi.org/10.1093/genetics/141.3.1147

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao H, Jin M, Zheng XM, Chen J, Yuan D, Xin Y, Wang M, Huang D, Zhang Z, Zhou K, Sheng P, Ma J, Ma W, Deng H, Jiang L, Liu S, Wang H, Wu C, Yuan L, Wan J (2014) Days to heading 7, a major quantitative locus determining photoperiod sensitivity and regional adaptation in rice. Proc Natl Acad Sci USA 111(46):16337–16342. https://doi.org/10.1073/pnas.1418204111

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Glazier AM, Nadeau JH, Aitman TJ (2002) Finding genes that underlie complex traits. Science 298(5602):2345–2349. https://doi.org/10.1126/science.1076641

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Hao W, Jin J, Sun SY, Zhu MZ, Lin HX (2006) Construction of chromosome segment substitution lines carrying overlapping chromosome segments of the whole wild rice genome and identification of quantitative trait loci for rice quality. J Plant Physiol Mol Biol 32(3):354–362

    CAS 

    Google Scholar
     

  • Huang X, Feng Q, Qian Q, Zhao Q, Wang L, Wang A, Guan J, Fan D, Weng Q, Huang T, Dong G, Sang T, Han B (2009) High-throughput genotyping by whole-genome resequencing. Genome Res 19(6):1068–1076. https://doi.org/10.1101/gr.089516.108

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang X, Yang S, Gong J, Zhao Q, Feng Q, Zhan Q, Zhao Y, Li W, Cheng B, Xia J, Chen N, Huang T, Zhang L, Fan D, Chen J, Zhou C, Lu Y, Weng Q, Han B (2016) Genomic architecture of heterosis for yield traits in rice. Nature 537(7622):629–633. https://doi.org/10.1038/nature19760

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Jiang N, Shi S, Shi H, Khanzada H, Wassan GM, Zhu C, Peng X, Yu Q, Chen X, He X, Fu J, Hu L, Xu J, Ouyang L, Sun X, Zhou D, He H, Bian J (2017) Mapping QTL for seed germinability under low temperature using a new high-density genetic map of rice. Front Plant Sci 8:1223. https://doi.org/10.3389/fpls.2017.01223

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jin J, Huang W, Gao JP, Yang J, Shi M, Zhu MZ, Luo D, Lin HX (2008) Genetic control of rice plant architecture under domestication. Nat Genet 40(11):1365–1369. https://doi.org/10.1038/ng.247

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Kawahara Y, de la Bastide M, Hamilton JP, Kanamori H, McCombie WR, Ouyang S et al (2013) Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice. 6(1):4. https://doi.org/10.1186/1939-8433-6-4

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, Yano M (2002) Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol 43(10):1096–1105. https://doi.org/10.1093/pcp/pcf156

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Komiya R, Ikegami A, Tamaki S, Yokoi S, Shimamoto K (2008) Hd3a and RFT1 are essential for flowering in rice. Development 135(4):767–774. https://doi.org/10.1242/dev.008631

    CAS 
    Article 

    Google Scholar
     

  • Komiya R, Yokoi S, Shimamoto K (2009) A gene network for long-day flowering activates RFT1 encoding a mobile flowering signal in rice. Development 136(20):3443–3450. https://doi.org/10.1242/dev.040170

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Koo BH, Yoo SC, Park JW, Kwon CT, Lee BD, An G, Zhang Z, Li J, Li Z, Paek NC (2013) Natural variation in OsPRR37 regulates heading date and contributes to rice cultivation at a wide range of latitudes. Mol Plant 6(6):1877–1888. https://doi.org/10.1093/mp/sst088

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Kubo T, Aida Y, Nakamura K, Tsunematsu H, Doi K, Yoshimura A (2002) Reciprocal chromosome segment substitution series derived from Japonica and Indica cross of rice (Oryza sativa L.). Breeding Sci 52(4):319–325. https://doi.org/10.1270/jsbbs.52.319

    CAS 
    Article 

    Google Scholar
     

  • Lee S, Kim J, Han JJ, Han MJ, An G (2004) Functional analyses of the flowering time gene OsMADS50, the putative SUPPRESSOR OF OVEREXPRESSION OF CO 1/AGAMOUS-LIKE 20 (SOC1/AGL20) ortholog in rice. Plant J 38(5):754–764. https://doi.org/10.1111/j.1365-313X.2004.02082.x

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Li XM, Chao DY, Wu Y, Huang X, Chen K, Cui LG, Su L, Ye WW, Chen H, Chen HC, Dong NQ, Guo T, Shi M, Feng Q, Zhang P, Han B, Shan JX, Gao JP, Lin HX (2015) Natural alleles of a proteasome α2 subunit gene contribute to thermotolerance and adaptation of African rice. Nat Genet 47(7):827–833. https://doi.org/10.1038/ng.3305

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Liu B, Liu Y, Wang B, Luo Q, Shi J, Gan J, Shen WH, Yu Y, Dong A (2019) The transcription factor OsSUF4 interacts with SDG725 in promoting H3K36me3 establishment. Nat Commun 10(1):2999. https://doi.org/10.1038/s41467-019-10850-5

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma X, Han B, Tang J, Zhang J, Cui D, Geng L, Zhou H, Li M, Han L (2019) Construction of chromosome segment substitution lines of Dongxiang common wild rice (Oryza rufipogon Griff.) in the background of the japonica rice cultivar Nipponbare (Oryza sativa L.). Plant Physiol Biochem 144:274–282. https://doi.org/10.1016/j.plaphy.2019.09.041

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Paterson AH, DeVerna JW, Lanini B, Tanksley SD (1990) Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes, in an interspecies cross of tomato. Genetics 124(3):735–742. https://doi.org/10.1093/genetics/124.3.735

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Price AH (2006) Believe it or not, QTLs are accurate! Trends Plant Sci 11(5):213–216. https://doi.org/10.1016/j.tplants.2006.03.006

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Sakai H, Lee SS, Tanaka T, Numa H, Kim J, Kawahara Y et al (2013) Rice annotation project database (RAP-DB): an integrative and interactive database for rice genomics. Plant Cell Physiol 54(2):e6. https://doi.org/10.1093/pcp/pcs183

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Salvi S, Tuberosa R (2005) To clone or not to clone plant QTLs: present and future challenges. Trends Plant Sci 10(6):297–304. https://doi.org/10.1016/j.tplants.2005.04.008

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Schaart JG, van de Wiel CCM, Lotz LAP, Smulders MJM (2016) Opportunities for products of new plant breeding techniques. Trends Plant Sci 21(5):438–449. https://doi.org/10.1016/j.tplants.2015.11.006

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Song S, Chen Y, Liu L, Wang Y, Bao S, Zhou X, Teo ZW, Mao C, Gan Y, Yu H (2017) OsFTIP1-Mediated regulation of Florigen transport in rice is negatively regulated by the ubiquitin-like domain kinase OsUbDKγ4. Plant Cell 29(3):491–507. https://doi.org/10.1105/tpc.16.00728

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Takahashi Y, Teshima KM, Yokoi S, Innan H, Shimamoto K (2009) Variations in Hd1 proteins, Hd3a promoters, and Ehd1 expression levels contribute to diversity of flowering time in cultivated rice. Proc Natl Acad Sci 106(11):4555–4560. https://doi.org/10.1073/pnas.0812092106

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tamaki S, Matsuo S, Wong HL, Yokoi S, Shimamoto K (2007) Hd3a protein is a mobile flowering signal in rice. Science 316(5827):1033–1036. https://doi.org/10.1126/science.1141753

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Tamaki S, Tsuji H, Matsumoto A, Fujita A, Shimatani Z, Terada R, Sakamoto T, Kurata T, Shimamoto K (2015) FT-like proteins induce transposon silencing in the shoot apex during floral induction in rice. Proc Natl Acad Sci USA 112(8):E901-910. https://doi.org/10.1073/pnas.1417623112

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tan L, Li X, Liu F, Sun X, Li C, Zhu Z, Fu Y, Cai H, Wang X, Xie D, Sun C (2008) Control of a key transition from prostrate to erect growth in rice domestication. Nat Genet 40(11):1360–1364. https://doi.org/10.1038/ng.197

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Taoka K, Ohki I, Tsuji H, Furuita K, Hayashi K, Yanase T, Yamaguchi M, Nakashima C, Purwestri YA, Tamaki S, Ogaki Y, Shimada C, Nakagawa A, Kojima C, Shimamoto K (2011) 14–3-3 proteins act as intracellular receptors for rice Hd3a florigen. Nature 476(7360):332–335. https://doi.org/10.1038/nature10272

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Tsuji H (2017) Molecular function of florigen. Breed Sci 67(4):327–332. https://doi.org/10.1270/jsbbs.17026

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Turck F, Fornara F, Coupland G (2008) Regulation and identity of florigen: flowering locus T moves center stage. Annu Rev Plant Biol 59:573–594. https://doi.org/10.1146/annurev.arplant.59.032607.092755

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Wang L, Wang A, Huang X, Zhao Q, Dong G, Qian Q, Sang T, Han B (2011) Mapping 49 quantitative trait loci at high resolution through sequencing-based genotyping of rice recombinant inbred lines. Theor Appl Genet 122(2):327–340. https://doi.org/10.1007/s00122-010-1449-8

    Article 
    PubMed 

    Google Scholar
     

  • Wang S, Basten C, Zeng Z (2012b) Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC. http://statgen.ncsu.edu/qtlcart/WQTLCart.htm

  • Wang S, Wu K, Yuan Q, Liu X, Liu Z, Lin X, Zeng R, Zhu H, Dong G, Qian Q, Zhang G, Fu X (2012a) Control of grain size, shape and quality by OsSPL16 in rice. Nat Genet 44(8):950–954. https://doi.org/10.1038/ng.2327

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Wei X, Qiu J, Yong K, Fan J, Zhang Q, Hua H, Liu J, Wang Q, Olsen KM, Han B, Huang X (2021) A quantitative genomics map of rice provides genetic insights and guides breeding. Nat Genet 53(2):243–253. https://doi.org/10.1038/s41588-020-00769-9

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Wei X, Xu J, Guo H, Jiang L, Chen S, Yu C, Zhou Z, Hu P, Zhai H, Wan J (2010) DTH8 suppresses flowering in rice, influencing plant height and yield potential simultaneously. Plant Physiol 153(4):1747–1758. https://doi.org/10.1104/pp.110.156943

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xi ZY, He FH, Zeng RZ, Zhang ZM, Ding XH, Li WT, Zhang GQ (2006) Development of a wide population of chromosome single-segment substitution lines in the genetic background of an elite cultivar of rice (Oryza sativa L). Genome 49(5):476–484. https://doi.org/10.1139/g06-005

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Xu J, Zhao Q, Du P, Xu C, Wang B, Feng Q, Liu Q, Tang S, Gu M, Han B, Liang G (2010) Developing high throughput genotyped chromosome segment substitution lines based on population whole-genome re-sequencing in rice (Oryza sativa L.). BMC Genom 11:656. https://doi.org/10.1186/1471-2164-11-656

    CAS 
    Article 

    Google Scholar
     

  • Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, Zhou H, Yu S, Xu C, Li X, Zhang Q (2008) Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet 40(6):761–767. https://doi.org/10.1038/ng.143

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan W, Liu H, Zhou X, Li Q, Zhang J, Lu L, Liu T, Liu H, Zhang C, Zhang Z, Shen G, Yao W, Chen H, Yu S, Xie W, Xing Y (2013) Natural variation in Ghd71 plays an important role in grain yield and adaptation in rice. Cell Res 23(7):969–971. https://doi.org/10.1038/cr.2013.43

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan WH, Wang P, Chen HX, Zhou HJ, Li QP, Wang CR, Ding ZH, Zhang YS, Yu SB, Xing YZ, Zhang QF (2011) A major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice. Mol Plant 4(2):319–330. https://doi.org/10.1093/mp/ssq070

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Yano M, Harushima Y, Nagamura Y, Kurata N, Minobe Y, Sasaki T (1997) Identification of quantitative trait loci controlling heading date in rice using a high-density linkage map. Theor Appl Genet 95(7):1025–1032. https://doi.org/10.1007/s001220050658

    CAS 
    Article 

    Google Scholar
     

  • Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T (2000) Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 12(12):2473–2484. https://doi.org/10.1105/tpc.12.12.2473

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu B, Lin Z, Li H, Li X, Li J, Wang Y, Zhang X, Zhu Z, Zhai W, Wang X, Xie D, Sun C (2007) TAC1, a major quantitative trait locus controlling tiller angle in rice. Plant J 52(5):891–898. https://doi.org/10.1111/j.1365-313X.2007.03284.x

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Yuan R, Zhao N, Usman B, Luo L, Liao S, Qin Y, Nawaz G, Li R (2020) Development of chromosome segment substitution lines (CSSLs) derived from guangxi wild rice (Oryza rufipogon Griff) under rice (Oryza sativa L) background and the identification of QTLS for plant architecture, agronomic traits and cold tolerance. Genes. https://doi.org/10.3390/genes11090980

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zamir D (2001) Improving plant breeding with exotic genetic libraries. Nat Rev Genet 2(12):983–989. https://doi.org/10.1038/35103590

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Zeng D, Tian Z, Rao Y, Dong G, Yang Y, Huang L, Leng Y, Xu J, Sun C, Zhang G, Hu J, Zhu L, Gao Z, Hu X, Guo L, Xiong G, Wang Y, Li J, Qian Q (2017) Rational design of high-yield and superior-quality rice. Nature Plants 3:17031. https://doi.org/10.1038/nplants.2017.31

    Article 
    PubMed 

    Google Scholar
     

  • Zhang B, Shang L, Ruan B, Zhang A, Yang S, Jiang H, Liu C, Hong K, Lin H, Gao Z, Hu J, Zeng D, Guo L, Qian Q (2019) Development of three sets of high-throughput genotyped rice chromosome segment substitution lines and qtl mapping for eleven traits. Rice 12(1):33. https://doi.org/10.1186/s12284-019-0293-y

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang G, Zeng RZ, Zhang Z, Ding XH, Li WT, Liu GM, He F-H, Tulukdar A, Huang CF, Xi ZY, Qin LJ, Shi JQ, Zhao FM, Feng MJ, Shan ZL, Chen L, Guo XQ, Zhu HT, Lu YG (2004) The construction of a library of single segment substitution lines in rice (Oryza sativa L.). Rice Genet Newsl 21:85–87


    Google Scholar
     

  • Zhang Q (2007) Strategies for developing green super rice. Proc Natl Acad Sci USA 104(42):16402–16409. https://doi.org/10.1073/pnas.0708013104

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Y, Luo L, Xu C, Zhang Q, Xing Y (2006) Quantitative trait loci for panicle size, heading date and plant height co-segregating in trait-performance derived near-isogenic lines of rice (Oryza sativa). Theor Appl Genet 113(2):361–368. https://doi.org/10.1007/s00122-006-0305-3

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Zhao J, Chen H, Ren D, Tang H, Qiu R, Feng J, Long Y, Niu B, Chen D, Zhong T, Liu YG, Guo J (2015) Genetic interactions between diverged alleles of Early heading date 1 (Ehd1) and Heading date 3a (Hd3a)/ RICE FLOWERING LOCUS T1 (RFT1) control differential heading and contribute to regional adaptation in rice (Oryza sativa). New Phytol 208(3):936–948. https://doi.org/10.1111/nph.13503

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Zhao Q, Huang X, Lin Z, Han B (2010) SEG-map: a novel software for genotype calling and genetic map construction from next-generation sequencing. Rice 3(2):98–102. https://doi.org/10.1007/s12284-010-9051-x

    Article 

    Google Scholar
     

  • Zhu J, Niu Y, Tao Y, Wang J, Jian J, Tai S, Li J, Yang J, Zhong W, Zhou Y, Liang G (2015) Construction of high-throughput genotyped chromosome segment substitution lines in rice (Oryza sativa L.) and QTL mapping for heading date. Plant Breed 134(2):156–163. https://doi.org/10.1111/pbr.12248

    CAS 
    Article 

    Google Scholar
     

  • Zhu W, Lin J, Yang D, Zhao L, Zhang Y, Zhu Z, Chen T, Wang C (2009) Development of chromosome segment substitution lines derived from backcross between two sequenced rice cultivars, Indica recipient 93–11 and Japonica donor nipponbare. Plant Mol Biol Report 27(2):126–131. https://doi.org/10.1007/s11105-008-0054-3

    CAS 
    Article 

    Google Scholar
     

  • Rights and permissions

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

    Disclaimer:

    This article is autogenerated using RSS feeds and has not been created or edited by OA JF.

    Click here for Source link (https://www.springeropen.com/)